Robinia pseudoacacia-dominated vegetation types of Southern Europe: Species composition, history, distribution and management

Michaela Vítková a,⇑, Jiří Sádlo a, Jan Roleček b,c, Petr Petřík a, Tommaso Sitzia d, Jana Müllerová a, Petr Pyšek a,e

a Institute of Botany, Czech Academy of Sciences, CZ-252 43 Průhonice, Czech Republic
b Institute of Botany, Czech Academy of Sciences, Lidická 25/27, CZ-657 20 Brno, Czech Republic
c Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
d Department of Land, Environment, Agriculture and Forestry, Università degli Studi di Padova, Viale dell’Università, 16, IT-35020 Legnaro (PD), Italy
e Department of Ecology, Faculty of Science, Charles University, Vinicína 7, CZ-128 44 Prague 2, Czech Republic

HIGHLIGHTS

• Five vegetation types reflect an oceanity-continentality gradient in South Europe.
• Robinia stands have specific species composition and high structural diversity.
• The main drivers of invasion is large-scale and long-term cultivation.
• The most invaded habitats are human-made, e.g. urban, agrarian and mining areas.
• Stratified management on regional and local scales should be favoured.

GRAPHICAL ABSTRACT

ABSTRACT

Knowledge of the species composition of invaded vegetation helps to evaluate an ecological impact of aliens and design an optimal management strategy. We link a new vegetation analysis of a large dataset to the invasion history, ecology and management of Robinia pseudoacacia stands across Southern Europe and provide a map illustrating Robinia distribution. Finally, we compare detected relationships with Central Europe.

We show that regional differences in Robinia invasion, distribution, habitats and management are driven both by local natural conditions (climate and soil properties, low competitive ability with native trees) and socioeconomic factors (traditional land-use). Based on the classification of 467 phytosociological relevés we distinguished five broad vegetation types reflecting an oceanicity–continentality gradient. The stands were heterogeneous and included 824 taxa, with only 5.8% occurring in more than 10% of samples, representing mainly hemerobic generalists of mesophilous, nutrient-rich and semi-shady habitats. The most common were dry ruderal stands invading human-made habitats. Among native communities, disturbed mesic and alluvial forests were often invaded throughout the area, while dry forests and scrub dominated in Balkan countries. Continuous, long-term and large-scale cultivation represent a crucial factor driving Robinia invasions in natural habitats. Its invasion should be mitigated by suitable...
management taking into account adjacent habitats and changing cultivation practices to select for native species. *Robinia* invasion has a comparable pattern in Central and Southern Europe, but there is a substantial difference in management and utilization causing heterogeneity of many South-European stands.

1. Introduction

Black locust, *Robinia pseudoacacia* L., is a widely distributed temperate tree species, considered as both ecologically risky and economically beneficial in many countries (Vítková et al., 2017). *Robinia* is expansive in its native range (Shure et al., 2006) and invasive in many regions where it has been introduced (e.g. Richardson and Rejmánek, 2011; Rumlerová et al., 2016; Roy et al. 2019; https://www.cal-ipc.org). It is a typical ecosystem transformer (sensu Richardson et al., 2000) and a fast growing colonizer (e.g. Rédei et al., 2014) which outcompetes other plants, thus reducing local biodiversity (e.g. Benesperi et al., 2012; Nascimbene et al., 2012; Sitzia et al., 2012). Furthermore it shows a homogenizing effect on species composition of both tree and herb layers (e.g. Trentanovi et al., 2013; Šibíková et al., 2019) and changes the community in favour of ruderals, aliens and generalists at the expense of native species and habitat specialists (e.g. Nascimbene and Mariní, 2010; Reif et al., 2016; Sitzia et al., 2018). These changes are caused by its ability of nitrogen fixation (e.g. Du et al., 2019) and its impact on light regime and soil environment including soil biota (Lazzaro et al., 2018), decomposition rate (e.g. Castro-Díez et al., 2012) and nutrient availability (e.g. Montagnini et al., 1991; Vítková et al., 2015). In specific cases (Vítková et al., 2017), *Robinia* has some positive effects on the species diversity of other trophic levels, such as birds (Reif et al., 2016), invertebrates (Kowarik, 1994) and macrofungi (Ślusarczyk, 2012), as well as on some functional groups of plants, such as geophytes (Vítková and Kolbek, 2010).

Robinia has been long cultivated for multiple purposes (e.g. timber and energy production, amelioration, reclamation of disturbed sites, honey production, forage and for ornamental reasons; Iliev et al., 2005; Yüksel, 2012; Nicolescu et al., 2018). The species spreads rapidly by root suckers (e.g. Kowarik, 1996), however, its ability of long-distance dispersal as well as the establishment of new populations is rather low (Pyšek et al., 2012b). The current abundance of *Robinia* in Europe results from its deliberate cultivation in open landscapes and large-scale afforestation campaigns, followed by spontaneous spread (Vítková et al., 2017; Sádlo et al., 2017). It was recognized as noxious invader in the first half of the 20th century (Vadas, 1914; Wendelberger, 1954), and this view was widely accepted later, regardless of the landscape context (Vítková et al., 2017). The species ranks 13th amongst the most invasive alien species in Europe and has the fifth strongest environmental impact (Nentwig et al., 2018). *Robinia* is not included in the list of invasive alien species of European Union concern adopted on the basis of the Regulation (EU) 2016/114. However, it meets the definition of “a widely spread invasive alien species” provided by Art. 3 of the same Regulation and, pursuant to its Art. 12, it may be listed in national lists of Member State’s concern (Sitzia et al., 2016b). *Robinia* is also listed as invasive by some national legislations, for example in Portugal, where its cultivation is forbidden even for ornamental purposes (Decree-Law, 1999/565). Some regional rural development programs provide incentives for its eradication and do not support projects involving *Robinia* cultivations.

According to Sitzia et al. (2016a), the core area of *Robinia* distribution in Europe lies in sub-Mediterranean to warm continental climates. The spread of the species is allowed by radical changes in the landscape caused by extensive urban development, horticultural boom and the conversion of degraded pastures and abandoned agricultural lands to forests (e.g. BOEP, 2013; Enescu and Dănescu, 2013; Campagnaro et al., 2018a). These processes support the introduction of new cultivars of *Robinia* as well as intentional cultivation which results in spontaneous invasion. However, knowledge about *Robinia* distribution, habitat conditions and invasion history in individual SE countries is uneven and scattered across different sources. At the same time, documents covering whole continent, such as DAISIE factsheet (www.europe-aliens.org) or the study of Sitzia et al. (2016a), focus rather on the global patterns than on the variability between the regions.

The main goal of our study was to assess the environmental impact of *Robinia* at local and regional scales in SE and to detect differences compared to CE (according to Vítková et al., 2017). Although understanding the species composition of invasive plant communities enables to evaluate important aspects of the ecological impacts of invasive species (Pyšek et al., 2012a), as well as to establish optimal management strategies that reconcile environmental, cultural and economic priorities (Pergl et al., 2016; Vítková et al., 2016, 2017, 2018), published floristic records concerning *Robinia* stands are rare and unevenly distributed. Their sorting into phytosociological system is also on the edge of SE botanists’ interest and therefore often overlooked (Rivas-Martinez et al., 2001), with several exceptions (e.g. Ubaldi, 2013; Allegrezza et al., 2019). Studies dealing with the economic benefits of *Robinia*, such as biomass and wood production (e.g. Grünewald et al., 2009; Nicolescu et al., 2018), tend to reduce the whole forest ecosystem to the silviculture of target tree species whereas other plants in the invaded community are ignored. Therefore, they cannot replace broad-scale vegetation survey because most *Robinia* forests include an admixture of other trees and harbour a developed understorey (Vítková and Kolbek, 2010).

The abovementioned lack of data was the reason for preparing this original comparative and synthesizing study instead of a mere overview. Here, we collected new vegetation, ecological and cultural data which we put together and harmonized with scattered previously known data on *Robinia* in SE to reconcile the attitudes of various disciplines and approaches. Only an understanding of complex relationships in the invaded ecosystem can result in optimal management strategy that will work at the landscape level to control *Robinia* as a threat to valuable native communities.

We defined several basic research questions: (i) Is *Robinia* evenly distributed across SE or are there any environmental barriers for its further invasion? (ii) Which are the main differences between invasion history, ecology and management of this species in different parts of SE and how do they affect its distribution? (iii) Which main plant traits and vegetation types can be defined to characterize *Robinia* stands in SE? (iv) Is there any connection among vegetation composition, ecological and cultural factors? (v) What are the main drivers of *Robinia* invasion in SE? (vi) Are there any substantial differences between SE and CE?
2. Material and methods

2.1. Study area

For the purpose of this study, SE is delimited by 47°N and 30°E, including Albania, Bosnia and Herzegovina, Bulgaria, Croatia, southern parts of France, Greece, Italy, Kosovo, Macedonia, Moldova, Montenegro, Portugal, Romania, Serbia, Slovenia, Spain, and European parts of Turkey (Fig. 1). Small territorial units such as Andorra were not considered. Border countries such as Austria, Switzerland, and Hungary were included as part of CE and analysed in previous studies (Vítková and Kolbek, 2010; Vítková et al., 2017). The concept of bioclimatic zones follows Rivas-Martínez et al. (2011). We chose CE as a comparative region because *Robinia* is common there and has a long tradition of multi-faceted research (e.g. Vadas, 1914; Kowarik, 1994; Vítková and Kolbek, 2010; Vítková et al., 2015, 2017; Sádlo et al., 2017).

2.2. Environmental data

Data on the history of cultivation, invasiveness, invaded habitats and management are original reports obtained using inquiries addressing relevant regional experts in nature conservation, invasion ecology and forestry (Table A1). To exclude the subjectivity of respondents and to get a comparable dataset across SE, we standardized questionnaire data using information from grey literature mentioned below the Table A2, our field experience and Google Street View that provided additional data on structure of *Robinia* stands growing along roads (Deus et al., 2016).

By considering origin, structure, species composition and invaded habitats, we applied a simplified classification of Sádlo et al. (2017) for a description of management types.

2.3. Phytosociological data

Initially, we collected 5,217 phytosociological vegetation plot records (relevés) with the presence of *Robinia* from (i) European Vegetation Archive (EVA; 4,931 relevés; Chytry et al., 2016), (ii) local grey literature (269 relevés from 15 papers), and (iii) unpublished field research (17 relevés from Bulgaria) (Table 1). These relevés were sampled using the Zürich-Montpellier approach (Dierschke, 1994), mostly with Braun-Blanquet scale of cover-abundance estimates for each species (Dengler et al., 2008). The relevés were stored in Turboveg for Windows 2.92 database (Hennekens and Schaminée, 2001) and processed in Juice 7.0 software (Tichy, 2002). Relevés lacking geographical coordinates were georeferenced using the Google Earth™ program (www.google.com/earth, Google Inc., Mountain View, CA, USA). All relevés north of the 47th parallel, as well as relevés without sufficient information on geographical location were excluded. Since we wanted to assess the impact of canopy dominated by *Robinia* on vegetation composition, we excluded also the relevés with its cover below 38% (i.e. less than grade 3 on the Braun-Blanquet scale). This condition was met by 574 relevés. To handle oversampling in some areas (e.g. Italy, see Table 1), we performed heterogeneity-constrained resampling so that a maximum 3–7 relevés, depending on beta-diversity per 1.5×1.5 km quadrat, were retained (Lengyel et al., 2011). The resulting dataset included 467 relevés. All vegetation layers (tree, shrub, herb, and seedling) were combined into a single layer (half of the data included a single layer already in the original sources). As bryophytes and lichens were not recorded in the majority of plots, they were excluded from the dataset. The plant names follow The Plant List (2013). To unify taxonomic concepts used in different countries and by different authors, some taxa were merged to a higher taxonomic level (see Table A3).

2.4. Distribution map

We created a map approaching the current distribution of *Robinia* in SE, including both intentionally planted and spontaneously spreading *Robinia* stands on forest and non-forest land (Fig. 1). We distinguished areas with the common occurrence of *Robinia*, i.e. where the species often forms invasive populations with the assumption for further spread. In the remaining areas, *Robinia* does...
Table 1
The list of sources of phytosociological relevés with *Robinia pseudoacacia* in Southern Europe.

<table>
<thead>
<tr>
<th>Country</th>
<th>References</th>
<th>GIVD (Global Index of Vegetation-Plot Databases)</th>
<th>Nr. of relevés</th>
<th>Robinia occurrence</th>
<th>Robinia cover greater than 30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td></td>
<td>Vegetation Database of Albania</td>
<td>EU-AL-001</td>
<td>De Sanctis</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE Europe Forest Database; Croatian</td>
<td>EU-00-021; EU-HR-002</td>
<td>Carni; Škvorc</td>
<td>3</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Mucina & Kolbek (1989); Balázs (2008); Sádlo (unpublished)</td>
<td>Balkan Dry Grassland Database; Balkan</td>
<td>EU-00-013; EU-00-019; EU-00-001; EU-00-025; EU-00-017; EU-00-016</td>
<td>Vassilev; Apostolova; Kalníková; Janssen; Marcenò</td>
<td>258 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vegetable Database; Bulgarian Vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Database; European Coastal Vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mediterranean Ammophyloeta Database</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td></td>
<td>Croatian Vegetation Database; SE Europe Forest</td>
<td>EU-HR-002; EU-00-021</td>
<td>Škvorc; Carni</td>
<td>228 8</td>
</tr>
<tr>
<td>France</td>
<td>Remon (2006)</td>
<td>SOPHY; Swiss Forest Vegetation Database;</td>
<td>EU-FR-003; EU-CH-005; EU-00-004; EU-00-023; EU-FR-005</td>
<td>Garbolino; Wohlgemuth; Font Castelli; Campos; Gegout</td>
<td>2,133 74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iberian and Macaronesian Vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information System (SIVIM); Iberian and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Macaronesian Vegetation Information System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(SIVIM) – Deciduous Forests; Ecoplant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td></td>
<td>Kriti; Greek Woodland Vegetation</td>
<td>EU-GR-001; EU-GR-002; EU-GR-005</td>
<td>Bergmeier; Dimopoulos</td>
<td>66 0</td>
</tr>
<tr>
<td>Kosovo</td>
<td></td>
<td>Database; Hellenic Natura 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>Buffa & Ghirelli (1993); Gentile (1997); Fuzia (1999); Parolo (2000);</td>
<td>SOPHY; Swiss Forest Vegetation Database;</td>
<td>EU-FR-003; EU-CH-005; EU-00-004; EU-00-023; EU-FR-005</td>
<td>Garbolino; Wohlgemuth; Carni; Kalníková; Agrillo; Casella; Venanzoni; Marcenò</td>
<td>930 207</td>
</tr>
<tr>
<td></td>
<td>Andreucci et al. (2003); Arrigoni & Papini (2003); Ubaidi (2003); Poldini</td>
<td>SE Europe Forest Database; Italian National</td>
<td>EU-RO-007; EU-RO-008; EU-00-016; EU-00-013; EU-00-025; EU-00-017</td>
<td>Indreica; Ruppecht; Marcenò; Vassilev; Kalníková; Janssen</td>
<td>325 64</td>
</tr>
<tr>
<td></td>
<td>& Vidali (1995); Wilhalm et al. (2018b); Campagnaro et al. (2018b)</td>
<td>Vegetation Database; Italian National National Vegetation Database</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rose Garden Database - Sapienza University of</td>
<td>EU-IT-011; EU-00-016</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rome; VegItaly; Mediterranean Ammophyloeta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macedonia</td>
<td></td>
<td>Gravel Bar Vegetation Database</td>
<td>EU-00-025</td>
<td>Kalníková</td>
<td>1</td>
</tr>
<tr>
<td>Montenegro</td>
<td></td>
<td>–</td>
<td>EU-00-002</td>
<td>Škvorc</td>
<td>0</td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td>Croatian Vegetation Database</td>
<td>EU-00-024</td>
<td>Biurrun</td>
<td>23</td>
</tr>
<tr>
<td>Romania</td>
<td>Oprea (2004); Niculescu et al. (2010, 2014)</td>
<td>Romanian Forest Database; Romania Grassland</td>
<td>EU-RO-007; EU-RO-008; EU-00-016; EU-00-013; EU-00-025; EU-00-017</td>
<td>Indreica; Ruppecht; Marcenò; Vassilev; Kalníková; Janssen</td>
<td>325 64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammophyloeta Database; Balkan Dry Grassland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Database; Gravel Bar Vegetation</td>
<td>EU-00-013; EU-00-003; EU-00-004; EU-00-002; EU-00-001; EU-00-019; EU-00-002; EU-00-001; EU-00-025; EU-00-020</td>
<td>Vassilev; Čuk; Škvorc; Ačić; Carni; Kalníková; Landucci</td>
<td>246 0</td>
</tr>
<tr>
<td>Serbia</td>
<td></td>
<td>Database of Forest Vegetation in Republic of</td>
<td>EU-ES-001; EU-00-024</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serbia; Vegetation Database of Northern Part</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of Serbia; Croatian Vegetation</td>
<td>EU-00-024</td>
<td>Biurrun</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Database; Vegetable Database Grassland</td>
<td>EU-00-024</td>
<td>Biurrun</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vegetable Database; SE Europe Forest Database;</td>
<td>EU-00-021; EU-FR-003; EU-00-023; EU-ES-001; EU-00-024</td>
<td>Šlíc; Carni; Garbolino</td>
<td>342 0</td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
<td>Gravel Bar Vegetation Database</td>
<td>EU-SI-001; EU-00-021; EU-FR-003</td>
<td>Šlíc; Carni; Garbolino; Biurrun; Garbolino; Campos; Pérez-Haase</td>
<td>422 92</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td>Vegetable-Plot Database of the University of</td>
<td>EU-00-011; EU-00-024</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the Basque Country (BIUVEG); SOPHY; Iberian</td>
<td>EU-00-021; EU-FR-003; EU-00-023; EU-ES-001; EU-00-024</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and Macaronesian Vegetation Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>System (SIVIM) – Deciduous Forests; Iberian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and Macaronesian Vegetation Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>System (SIVIM) – Wetlands; Iberian and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Macaronesian Vegetation Information System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(SIVIM) – Floodplain Forests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
<td>–</td>
<td>AS-TR-001</td>
<td>Ugurlu</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vegetation Database of the Grassland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communities in Anatolia</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Nr of Relevés 5,217 467
not grow at all or only rarely, in small populations and seldom able to invade.

Because there is no consistent mapping approach available for Robinia distribution across SE countries, we combined a variety of sources differing in mapping methods (Table A4). They represented three categories: (i) real distribution – localities of phytosociological relevés with Robinia presence (see section 2.3), regional maps with current distribution (forest maps, citizen science maps, floristic inventories); (ii) modelled distribution (i.e. the model of the relative probability of presence of Robinia in Europe, with more than 30% probability of Robinia included; De Rigo et al., 2016; Sitzia et al., 2016a) based on extant data (e.g. field observations of European National Forest Inventories), and (iii) incomplete or missing distribution data. The process of creating our distribution map of Robinia from these heterogeneous sources is shown in Fig. A1. Fig. A2 shows existing localities of Robinia in SE which were used as sources for the map.

The model distribution was used as a basis for the map only in France, Italy, Romania, and partly in Bulgaria and Serbia, whereas in other regions the model either underestimated or overestimated the real distribution of the species and most of Iberian and Balkan Peninsulas does not even include Robinia at all. For example, areas with a high presence of Robinia were mapped in high mountains of north-western Bulgaria, actually covered by dense coniferous forests and subalpine pastures where Robinia is not able to grow (Vítková et al., 2017). Therefore, in Portugal, Spain, Albania and Croatia, we replaced the model by regional maps of current Robinia distribution. In Bosnia and Herzegovina, Greece, Kosovo, Macedonia, Moldova, Montenegro, Turkey, and locally in Bulgaria and Romania, there were either incomplete or missing distribution data, therefore we created new local maps based on large-scale landscape characteristics which were detected as limiting Robinia occurrence across SE (see section 3.2 and Fig. A1).

In the next step, we harmonized the sources of the map and compared them with results of our field research, local maps of climate, land cover and land use (e.g. WorldClim database, Hijmans et al., 2005; Corine Land Cover map, CLC2012, Büttner, 2014). Furthermore, we performed Google Street View verification using ~9,000 random points or 360° photos in the eastern part of SE (i.e. from Croatia to Turkey), and ~3,000 points in the western part (i.e. from Portugal to Slovenia). We detected that abundance of Robinia along roads is a suitable indicator of its broad distribution in the adjacent landscape. We tested this verification method on 40 transects each ~20 km long, with ~1-km sampling interval, leading through the landscape with the known distribution of Robinia (Table A5).

2.5. Classification of vegetation types

Given that the resampled dataset was much smaller than the original one (i.e. 467 vs. 5,217 relevés), we tested its robustness using modified Twinspan classification (Roleček et al., 2009) and the analysis of diagnostic, constant and dominant species using the Juice 7.0 program (Tichý, 2002). Species with a frequency under 5% were excluded to reduce noise prior to classification (Tsiripidis et al., 2007). Because the results were robust, we used the reduced dataset and in the next step we compared its classification using several frequently applied algorithms: modified Twinspan, beta-flexible, Ward’s method (Podani, 2001); K-means (Tichý et al., 2014) and Isopam (Schmutzlein et al., 2010) clustering into different numbers of clusters. Based on the analysis of diagnostic, constant and dominant species we identified three former algorithms which provided similar groups. Crispness analysis (Botta-Dukát et al., 2005) showed the highest support for classification into five groups. We chose modified Twinspan algorithm for final classification so that the resulting vegetation types reflect the main gradients in species composition (Roleček et al., 2009). Vegetation types are presented using a synoptic table with diagnostic species shown. Species with φi coefficient values (>100) higher than 20 and significantly related to a vegetation type (Fischer’s exact test level α = 0.01) were considered diagnostic (see Table 3).

Classification results were projected on the ordination space of Detrended Correspondence Analysis (DCA) using the “vegan” library (Oksanen et al., 2015, version 2.0–10) in R program (R Core Team 2016, version 2.9.1) operated from Juice. Before analysis, logarithmic transformation of percentage covers and downweighting of rare species using the vegan package defaults based on the original Decorana code (Hill and Gauch, 1980) were performed. To assist ecological interpretation of the compositional gradients, we projected basic geographical and bioclimatic variables to the ordination space. We only included those variables that explained a significant portion of variation in species composition in Canonical Correspondence Analysis (CCA). Canoco 5 software (Smilauer and Lepš, 2014) was used for testing (Monte Carlo permutation test with α = 0.05). Bioclimatic variables were retrieved from the WorldClim database (Hijmans et al., 2005). Each vegetation type was named according to the most important ecological gradient and/or habitat characteristic.

2.6. Evaluation of plant traits

Each taxon was classified according to (i) life form (i.e. 1. trees, 2. erect shrubs, 3. climbing shrubs and perennials, 4. erect perennials, and 5. annuals and biennials), (ii) habitat associations (i.e. 1. high light and low nutrient conditions, 2. mesic habitats with moderate light, moisture, and nutrient conditions, 3. shady forests and scrub, and 4. ruderal nitrophilous species), and (iii) sensitivity to human influence (i.e. 1. indicator of naturalness, 2. indicator of hemeroby, 3. alien status, at least in some countries). These data were adopted in simplified form from Pladis database containing life form (Klimešová et al., 2017), habitat demands (Chytrý et al., 2018) and sensitivity to human influence (Klotz and Kühn, 2002). Traits of several species not included in Pladis were compiled from respective local floras (e.g. Hegi, 1975). The classified characteristics of the species were displayed using bar charts based on average percentage frequencies (Fig. 2).

2.7. Evaluation of invasion drivers

Based on inquiries of regional experts (Table A1), we determined invasion drivers which were used as predictors. The relations between these predictors and the performance of Robinia in the individual SE countries was tested using the non-parametric ANOVAs, as the response variables (area of Robinia forests; the species’ residence time; time since the first wave of afforestation according to Table 2) revealed significant deviations from normality, even after transformations. This was very likely caused by the severe outlier values in the response data. To test the relations between invasion drivers and area occupied by Robinia in individual SE countries we used only data for both planted and spontaneous stands growing on forest land. The area of Robinia stands on non-forest land can be large and considerably different among individual SE countries, but its extent is unknown. However according to Krivánek et al. (2006) planting area has a significant effect on the number of localities outside forestry cultivation.
Fig. 2. Comparison of plant traits in Robinia stands growing in Southern Europe. Abbreviations: TREE – trees; SHRUB – erect shrubs; CLIMBING – climbing shrubs and perennials; PEREN – erect perennials; ANNUAL – annuals and biennials; LIGHT – high light and low nutrient conditions; MESIC – mesic habitats with moderate light, moisture, and nutrient conditions; SHADOW – shady forests and scrub; RUDERAL – ruderal nitrophilous species; NATURAL – indicator of naturalness; HEMEROBY – indicator of hemeroby; ALIENS – alien status, at least in some countries. See text for details.

Table 2
Distribution and history of Robinia cultivation in Southern Europe.

<table>
<thead>
<tr>
<th>Country</th>
<th>Area of Robinia forests (ha)</th>
<th>First record of planting</th>
<th>First wave of afforestation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>20,000 (1.3%)</td>
<td>1929–1930</td>
<td>1955</td>
<td>Meta (1993); ANFI (2004); Metaj and Zoto, pers.com.</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>15,200 (0.7%)</td>
<td>1880</td>
<td>early 20th century</td>
<td>Maslo (2016); Cyvetković et al. (2017)</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>150,590 (4%)</td>
<td>middle of 19th century</td>
<td>end of 19th century</td>
<td>Iliev et al. (2005); Petrova et al. (2013)</td>
</tr>
<tr>
<td>Croatia</td>
<td>12,004 (0.05%)</td>
<td>1880</td>
<td>second half of 19th century</td>
<td>Perić et al. (2017); Dodan et al. (2018); Dodan and Perić, pers. com.</td>
</tr>
<tr>
<td>France (Southern)</td>
<td>64,000 (0.4%)***</td>
<td>after 1650</td>
<td>end of 19th century</td>
<td>Orazio and Bastien (2017); https://agriculture.gouv.fr</td>
</tr>
<tr>
<td>Croatia</td>
<td>16,390 (0.4%)*</td>
<td>1835</td>
<td>second half of 19th century</td>
<td>Alizoti (2017); Xanthopoulos, pers. com.</td>
</tr>
<tr>
<td>Greece</td>
<td>377,186 (4.3%)</td>
<td>1662</td>
<td>second half of 19th century</td>
<td>Bellucci (1662); Rizzi (1847); Caruel (1867); Monteverdi et al. (2017)</td>
</tr>
<tr>
<td>Italy</td>
<td>2,400 (0.5%)</td>
<td>no data</td>
<td>not used</td>
<td>Tomter et al. (2013); Maxhuni, pers. com.</td>
</tr>
<tr>
<td>Macedonia</td>
<td>2,622 (0.3%)</td>
<td>1873</td>
<td>1950</td>
<td>Andonovski and Mandjukovski (2017); Simovski, pers. com. Rotaru (2003); Gulca (2009)</td>
</tr>
<tr>
<td>Montenegro</td>
<td>131,000 (36.1%)</td>
<td>middle of 19th century</td>
<td>1914</td>
<td>Anonymous (1858); Rudolf and Brus (2006); Brus et al. (2017)</td>
</tr>
<tr>
<td>Portugal</td>
<td>715 (0.1%)</td>
<td>1911</td>
<td>not used</td>
<td>Stefanović et al. (2010); Curovic and Curovic (2017)</td>
</tr>
<tr>
<td>Romania</td>
<td>less than 1,000 (0.03%)</td>
<td>1750–1800 (1804*)</td>
<td>not used</td>
<td>de Almeida and Freitas (2006); ICNF (2013); Rosa (2013); Tomé et al. (2017)</td>
</tr>
<tr>
<td>Serbia</td>
<td>250,000 (3.6%)</td>
<td>1750</td>
<td>1852</td>
<td>Cilinescu (1941); Haralamb (1967); Palaghianu and Dutca (2017)</td>
</tr>
<tr>
<td>Slovenia</td>
<td>169,154 (7.5%)</td>
<td>early 19th century</td>
<td>middle of 19th century</td>
<td>Andrašev et al. (2017); Andrašev, pers. com.</td>
</tr>
<tr>
<td>Spain</td>
<td>157,148 (13.3%)</td>
<td>early 19th century</td>
<td>1858</td>
<td>Anonymous (1858); Rudolf and Brus (2006); Brus et al. (2017)</td>
</tr>
<tr>
<td>Turkey (European)</td>
<td>2,225 (0.01%)</td>
<td>1752</td>
<td>end of 19th century</td>
<td>Elorza et al. (2004); GEIB (2006); Castro-Diez et al. (2017)</td>
</tr>
<tr>
<td>Turkey (Mediterranean)</td>
<td>20,000 (0.1)%***</td>
<td>1920s</td>
<td>middle of 20th century</td>
<td>Kaynak (1951); Saitçioğlu (1969); Konuçu (2001)</td>
</tr>
</tbody>
</table>

*The cover includes both Robinia pseudoacacia and Acacia sp.
**Estimated cover based on the total area of Robinia in France and its distribution in Southern France
***This value relates to the whole territory of Turkey.
*First report of naturalization
Table 3
Diagnostic species combination in vegetation types of South European Robinia stands sorted by the highest frequency and fidelity within the each type.

<table>
<thead>
<tr>
<th>Vegetation type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of relevés</td>
<td>20</td>
<td>62</td>
<td>155</td>
<td>90</td>
<td>140</td>
</tr>
<tr>
<td>Diagnostic species combination</td>
<td>Melica ciliata</td>
<td>Rubus ulmifolius agg.</td>
<td>Acer campestre</td>
<td>Bromus sterilis</td>
<td>Rubus caesius</td>
</tr>
<tr>
<td></td>
<td>Carex liparocapros</td>
<td>Polystichum setiferum</td>
<td>Rubus fruticosus agg.</td>
<td>Elymus repens</td>
<td>Humulus lupulus</td>
</tr>
<tr>
<td></td>
<td>Tragopogon dubius</td>
<td>Hypericum androsaemum</td>
<td>Anemone nemorosa</td>
<td>Ballota nigra</td>
<td>Urtica dioica</td>
</tr>
<tr>
<td></td>
<td>Berberis vulgaris</td>
<td>Holcus mollis</td>
<td>Corylus avellana</td>
<td>Acer tataricum</td>
<td>Bryonia dioica</td>
</tr>
<tr>
<td></td>
<td>Festuca valesiaca</td>
<td>Dryopteris filix-mas agg.</td>
<td>Prunus avium</td>
<td>Hirundo rustica</td>
<td>Cacoxenia hederacea</td>
</tr>
<tr>
<td></td>
<td>Carex supina</td>
<td>Athyrium flex-a-femina</td>
<td>Polygonatum multiflorum</td>
<td>Achillea setacea</td>
<td>Populus nigra / / canadensis</td>
</tr>
<tr>
<td></td>
<td>Festuca rubicola</td>
<td>Angelica sylvestris</td>
<td>Carpinus betulus</td>
<td>Convvolvulus arvensis</td>
<td>Cornus sanguinea</td>
</tr>
<tr>
<td></td>
<td>Pileum piliferum</td>
<td>Agristis capillaris</td>
<td>Quercus petraea</td>
<td>Anthiricus cerefolium</td>
<td>Allaria petiolata</td>
</tr>
<tr>
<td></td>
<td>Centaurus stoebe</td>
<td>Smilax aspera</td>
<td>Frasinus ornus</td>
<td>Cuminum maculatum</td>
<td>Pircula verna</td>
</tr>
<tr>
<td></td>
<td>Saponaria acmodes</td>
<td>Brachypodium rupestre</td>
<td>Pulmonaria officinalis agg.</td>
<td>Tolllis arvensis agg.</td>
<td>Viola hirta agg.</td>
</tr>
</tbody>
</table>

3. Results

3.1. History of cultivation and invasion

We detected similar course but different timing of *Robinia* introduction, planting and escape in SE countries. The tree was being introduced since the second half of 17th century until 1929; first to France and Italy, followed by Romania, Portugal and Spain in the 18th century, and last to Balkan countries (Table 2). At the beginning, *Robinia* was only used as an ornamental tree in parks and gardens. It probably started to escape shortly after its introduction, which demonstrates the high invasiveness of the species. The lag phase was usually long, and frequent planting in the wild started invasion in the surroundings. For example, in Portugal, *Robinia* was introduced in the second half of the 18th century and its first naturalization was already reported in 1804 (Table 2). Despite its early introduction, *Robinia* still does not form large stands there (Fig. 1), and only occurs as solitary trees or small populations without distinct structure and species composition. The species has never been used for timber production in Portugal, neither in Montenegro and Kosovo, and was only planted on a small scale as a melliferous species, in protective forest belts and linear features along roads, railways, in settlements and disturbed areas (Table 2 and A2). On the other hand, rapid and large invasion occurs in countries where *Robinia* was used repeatedly in large-scale afforestation projects (e.g. Romania and Bulgaria) and large lowland areas in Bulgaria and Moldova.

The distribution and further spread of *Robinia* is restricted by environmental and historical features of the landscape. Based on qualitative expert-based analysis of various sources evaluated for creating the map of Robinia occurrence (Fig. 1), we detected the following large-scale constraints reducing its invasion: (i) altitudes over 500 m a.s.l., i.e. mostly covered by mountain forests and at higher altitudes by subalpine to alpine vegetation; (ii) natural areas covered by native trees, sparsely inhabited and mostly situated in mountain hillsides; (iii) zones of hot Mediterranean climate, typically with the occurrence of olives, eucalypts or palms (except big cities such as Istanbul); (iv) large marshland and wetland areas which are not summer-dry, such as Po and Danube river deltas; (v) cool intermontane basins with open cultural landscape and scattered *Alnus* and *Salix* stands on wet soils, for example near Brasov (Romania); and (vi) areas where *Robinia* has never been cultivated on a large scale for historical reasons, such as most parts of Montenegro or Portugal. We summarized abovementioned constraints into four main ecological factors limiting *Robinia* invasion in SE: (i) climate: both cold, combined with a short vegetation season in high altitudes, and hot and dry in southern parts of SE; (ii) soil properties, namely soil hypoxia connected with high soil moisture of long-term waterlogged and compact soils; (iii) low competitive ability with native trees: tree shade in closed forests and shrubland; and (iv) historical land-use.

3.2. Distribution

There is no available map showing current distribution of *Robinia* in SE, moreover the total cover of the species reported for individual SE countries refers only to forest land (Table 2). However, most *Robinia* populations occur on non-forest land as solitary trees or clusters, groves or shrubberies growing spontaneously (especially in Balkan countries), or established intentionally (e.g. energy plantations) and their location and area remain unknown. Therefore, we created a distribution map (Fig. 1) merging cultural and spontaneous occurrences on forest and non-forest land.

Cover of *Robinia* stands varied considerably among individual countries (Fig. 1, Table 2); from less than 1% of forested area in most countries, between 3.6 and 7.5% in Romania, Bulgaria, Italy, and Serbia to the highest values 13.3% and 36.1% in Slovenia and Moldova. As shown in Fig. 1, we detected black locust landscapes where *Robinia* is forming numerous large stands and colonizing most of the suitable habitats. Such regions have an old tradition of *Robinia* plantings, for example the hilly landscapes bordering the southern Prealps (Italy), river basins of Sava (Croatia, Bosnia and Herzegovina, Serbia) and Olt (Romania), Stará Planina foothills (Serbia and Bulgaria) and large lowland areas in Bulgaria and Moldova.

Robinia often forms species-rich mixed forests with heterogeneous plant composition; of 824 taxa in phytosociological relevés, only 48 (5.8% of their total number) showed frequencies over 10%, whereas 568 (69%) displayed frequencies below 1%. The following 10 species were most common in the dataset with decreasing frequency from 51 to 31%: *Hedera helix*, *Sambucus nigra*, *Crataegus monogyna*, *Urtica dioica*, *Euonymus europaeus*, *Geum urbanum*, *Galium aparine*, *Clematis vitalba*, *Corvus sanguinea* and *Dioscorea communis*. The most frequent were hemerobic generalists of mesophilous, nutrient-rich and semi-shaded habitats, namely native nemoral perennials (e.g. *Arum maculatum* agg., *Brachypodium sylvaticum*, *Dryopteris filix-mas* agg., *Lamium galeobdolon* and *Viola odorata* agg.) and ruderal species which were perennial (e.g. *Ballota nigra* and *Elymus repens*) or annual (e.g. *Bromus sterilis* and *Geranium robertianum*; Fig. 2). Other life forms were commonly represented by tall shrubs and small trees (i.e. *Acer campestre*, *Corylus avellana*, *Prunus spinosa* and *Ulmus minor*) and herbaceous or woody lianas including climbing shrubs and tall herbs (i.e. *Clematis vitalba*, *Galium aparine*, *Hedera helix*, *Rosa canina* agg. and *Rubus fruticosus* agg.). The number of aliens was rather low.
3.4. Vegetation types

Based on the classification of the dataset, we distinguished five broad vegetation types (see Fig. 1 for geographical distribution and Fig. 3 for spatial arrangement of the clusters in a hierarchical tree) which did not show affinity to any specific management. Each type included Robinia plantations, abandoned post-cultural stands and related spontaneous successional stages.

The floristic composition of each type was expressed by species fidelity that was used to compare among the types (Table 3 and Table A6). In the dendrogram (Fig. 3), Cluster 1 (open stands with dry-grassland species) was characterized by very limited distribution, a small number of relevés and high number of species with high fidelity (Fig. 1). The remaining relevés splitted into two groups, each consisting of two clusters. Cluster 2 (stands of precipitation-rich areas) and Cluster 3 (stands of mesic woodland areas) share shady forest species, such as Polystichum setiferum. The second pair (i.e. Clusters 4 and 5; dry ruderal stands and mesic nitrophilous stands, respectively) shared widespread ruderal species, such as Ballota nigra.

DCA plot (Fig. 4) showed that these types are well differentiated along the first ordination axis related to both longitude and latitude. It explained 5.7% of the variation in species composition and can be interpreted as a gradient of oceanity-continentality.

3.4.1. Type 1: Open stands with dry-grassland species

This type represents sparse clonal 5–6 (–10) m tall Robinia scrubs occurring at the physiological limits of the species and represents a long-lasting successional stage in dry grasslands. Only 20 relevés were recorded from valleys with continental climate in Southern Alps (Fig. 1). Their species-rich understorey is dominated by Melica ciliata, increasing in abundance under Robinia canopy, and forming only small-sized populations among natural communities on stony and sunny sites. Due to its rapid sprouting ability, Robinia creates low open stands rich in steppe perennials and dicots, e.g. from the genera Festuca, Stipa, Teucrium and Thymus, and ruderal and steppe annuals such as Aegilops, Bromus, Orlaya and Tordylium (Fig. 3 and Tables 3 and A6). Dry-tolerant shrubs such as Berberis vulgaris are also common but form a low cover.

This type includes rare and extreme Robinia stands (Fig. 4), co-occurring with other Robinia types growing under more suitable site conditions. They represent either spontaneous stands or remnants of afforestation efforts on stony pastures, for example in Bulgaria, Serbia, Montenegro, Macedonia and northern Greece. Extensive dwarf Robinia stands with a grassy understorey or mixed dwarf stands with Ailanthus altissima, widespread in some dry areas, could also be included in this type.
3.4.2. Type 2: Stands of precipitation-rich areas

This type includes Robinia forests with species composition and distribution related to temperate Atlantic-sub-Mediterranean mesophilous oak and ash-maple scree forests, where Robinia forms tall pure or mixed stands and dense shrubby thickets. This type is characterized by joint occurrence of (semi-)evergreen Mediterranean woody species (e.g. Hypericum androsaemum and Laurus nobilis), acidophilous species of temperate-sub-Atlantic distribution (e.g. Holcus mollis and Teucrium scorodonia) and temperate species of wet nutrient-rich habitats (e.g. Carex pendula and Stachys sylvatica). The dense understorey is mostly dominated by Rubus ulmifolius, Hedera helix and many ferns (e.g. Athyrium filix-femina and Pteridium aquilinum). Low coppiced stands are common and often hardly penetrable due to spiny climbing shrubs such as Rubus spp. and Smilax aspera. The high frequency of both xerophilous and shade-tolerant species (e.g. Brachypodium rupestre vs Oxalis acetosella, respectively) may reflect variability within this type, ranging from sunny hills to shady ravines.

Most relevés originate from areas of oceanic climate in northern Spain, but few are also located on the Elba Island (Italy) suggesting a possible wider distribution of this type (Fig. 1). Stands in the oceanic part of south-western France could probably also be assigned into this unit.

3.4.3. Type 3: Stands of mesic woodland areas

This type is associated with mesic temperate-sub-Mediterranean oak, oak-hornbeam and oriental hornbeam forests. Stands of this type are usually rich in mesophilous shrubs (e.g. Euonymus europaeus and Rubus fruticosus agg.), lianas (e.g. Clematis vitalba and Hedera helix) and trees (e.g. Acer campestre and Carpinus betulus). Other frequent woody species are Corylus avellana, Fraxinus ornus, Ostrya carpinifolia and Quercus petraea (Figs. 3 and 4; Tables 3 and A6). The ground layer is characterized by mesophilous forest herbs such as Anemone nemorosa, Polygonatum multiflorum and Pulmonaria officinalis agg.

This type is widely distributed across SE from northern Spain to Bulgaria, with the highest number of relevés coming from Italy (Fig. 1). In the Balkan countries, it is probably more common than suggested by available data.

3.4.4. Type 4: Dry ruderal stands

These Robinia low forests or shrubby groves originate from both planting and spontaneous spread. They occur in dry habitats of agricultural, ruderal, pastoral and urbanized areas that supply the understorey with many xerophilous ruderal species (Fig. 3; Tables 3 and A6). The stands are often managed as a goat pasture or with frequent topping, pollarding and coppicing. Such disturbances are well tolerated by Robinia unlike other woody species that are therefore rare. Among shrubs, dry-tolerant species prevail, such as Crataegus monogyna and Rosa canina, in the eastern part also Paliurus spina-christi and Acer tataricum. The herbaceous undergrowth is dominated by ruderal species including short-lived grasses (e.g. Bromus sterilis and Hordeum spp.), short-lived umbellifers (e.g. Anthriscus cerefolium and Myrrhoides nodosa), perennial dicots (e.g. Ballota nigra) and perennial grasses (e.g. Elymus repens and Poa angustifolia). The understorey dominated by short-living weeds completely withers and becomes dry during early summer.
This type probably represents the most common SE Robinia stands, the available relevés being broadly distributed from France to eastern Romania and abundant especially in Balkan countries (Fig. 1). In most SE cities (e.g. Madrid, Rome, Beograd, Sofia and Tirana) and along highways (e.g. in Spain, Italy and Turkey), semi-sporadically dry ruderal Robinia populations commonly mix with other alien trees such as Ailanthus altissima, Broussonetia papyrifera, Gleditsia triacanthos, Morus alba or Ulmus pumila.

3.4.5. Type 5: Mesic nitrophilous stands

Species composition of these stands reflects deep, mesic to wet, and summer-dry soils, rich in organic nutrients (Figs. 3 and 4; Tables 3 and A6). In sub-Mediterranean floodplains and shady slopes of valleys, riverine trees such as Populus alba, P. nigra and P. × canadensis create an admixture at the tree layer. The dense undergrowth is dominated by mesophile shrubs (e.g. Cornus sanguinea and Sambucus nigra), semi-shrub Rubus caesius, herbaceous vines such as Calystegia sepium, Humulus lupulus, tall perennials (e.g. Anthriscus sylvestris and Urtica dioica) and short spring herbs (e.g. Ficaria verna and Glechoma hederacea). Many other alien woody species (e.g. Acer negundo and Parthenocissus quinquefolia) and herbs (e.g. Artemisia verlotiorum and Solidago gigantea) are also typical.

Distribution of this type ranges from Spain to Romania (Fig. 1). From unpublished data we can infer that this type also occurs in southern Balkan countries such as Montenegro (near Virpazar town), Greece (Nestos River) and Turkey (Meriç River).

3.5. Invaded habitats

Based on inquiries, field research and literary sources, we obtained a list of invaded habitats in individual SE countries (Table A2). The most common include human-made habitats, such as urban, agrarian, industrial, and mining areas (Fig. A3). Most stands belong to vegetation type 4 (see section 3.4.4) where Robinia creates mixed groves with other alien woody species in urban greenery and on peripheries of cities. In agricultural landscapes, such as the eastern Po Plain (Italy), Robinia is commonly used as hedgerows or vineyard boundaries. Large disconnected groves were planted as a result of afforestation of degraded land, including reclaimed mining areas (e.g. Bulgaria, Greece and Turkey).

In case of planting Robinia in the surrounding landscape, mesic and alluvial forests are invaded throughout SE, while invasion into dry forests and scrub is mostly common in Balkan countries (e.g. Bosnia and Herzegovina, Bulgaria and Serbia; Table A2). As a light-demanding species, Robinia does not colonize dense forests or shrubland, but can create belts at the margins of mesic forests dominated by oak, oak-hornbeam and beech (e.g. Croatia, Italy and Moldova; vegetation types 2 and 3, see sections 3.4.2 and 3.4.3). Robinia often invades disturbed alluvial forests on well drained summer-dry sites (e.g. Albania, Slovenia and Spain; vegetation type 5, see section 3.4.5; Table A2).

Open and disturbed slopes and dry grasslands were the most sensitive to Robinia invasion. Afforestation of steep slopes and xeric sites were frequently applied to prevent soil erosion and aridization especially in the Balkan region. Salty and toxic soils were sparsely invaded in SE (Table A2).

3.6. Invasion drivers

Human activities were the main invasion drivers and contain: (i) forestry use including both large projects of afforestation in open landscape and cultivation in local spinneys; (ii) planting for viticulture and orcharding traditionally using Robinia wood for vineyard poles and wine barrels; (iii) cultivation for soil protection against erosion and desertification; (iv) linear woodlands, such as protective belts along railways, motorways, roads and rivers; and (v) periurban cultivation of small-scaled stands for multiple uses (e.g. honey, forage, culinary and medicinal). We analysed the effect of each driver on the area occupied by Robinia, its residence time and the time since first afforestation (Table A7). The forestry use had a significant effect on all three response variables (p = 0.014, 0.034 and 0.056, respectively), viticulture and orcharding was correlated with area (p = 0.034) and afforestation (p = 0.033), and soil protection only marginally with area (p = 0.09; Fig. 5). The effects of linear woodlands and periurban cultivation were not statistically significant. Statistical analysis confirms our expectation based on historical context (see section 3.1) that rapid invasion of Robinia is favoured by long-term and large-scale cultivation in the landscape.

3.7. Management

The approaches to Robinia reflect differences in cultivation history across SE (Table 2). In Italy, Bulgaria and Romania, Robinia has been historically favoured for various purposes (Table 4), while in Albania and Turkey the tree only started to be planted 70 years ago and it is now mainly used for erosion control (Table A2). According to local black lists or national legislation, Robinia is considered invasive in most SE countries (Table 5). However, many of the studied countries have no legal restrictions to Robinia cultivation, as well as no systematic program targeted to its eradication at valuable sites, despite some regional eradication projects (Table 5).

We distinguish four management types of Robinia stands in SE (Table A2 and 4):

1. Regularly managed pure Robinia forests. Low forests maintained by coppicing has a long historical tradition across SE, especially in areas with forest grazing or silvopastoral systems like in Basque region and Balkan countries. Recently, this has become the most frequent Robinia management due to benefits from high productivity and easy regeneration. In protected areas, woodland structure can be improved by retaining selected standards (optimally native trees) whereas simple coppicing is forbidden. High forests cultivated for timber production are nowadays less popular and occur mainly in agricultural lowlands where other timber is lacking, such as in basins of Drava and Danube rivers. Despite management control, Robinia forests present a risk for the biodiversity of surrounding habitats, until they are replaced by native dominants. Light-demanding Robinia can spread spontaneously into open landscape, such as abandoned vineyards, orchards and fields, moreover it is able to colonize forest margins or disturbed sites in wooded areas, such as fresh clear-cuts or post-fire sites.

2. Regularly managed mixed Robinia forests. Both high and coppiced forests in inter-cropping plantations or originated by decaying of native trees were found. The risk of these stands in terms of invasion is highly context-dependent. Old sparse oak forest with admixture of Robinia can represent a transitional stage of succession to native forest, whereas mixed stand of Robinia and other aliens, such as Ailanthus altissima, Populus × canadensis or Gleditsia triacanthos can cause an environmental threat.

3. Intensive short rotation coppice plantations. These even-aged stands with a short rotation period are mostly planted on farmland for renewable bioenergy production, rarely for forage. If they are adjacent to semi-natural grasslands potentially threatened by forest expansion, a considerable inva-
Fig. 5. The area occupied by the Robinia forests, depending on the intensity of its utilization in forestry, viticulture and orchards and in soil protection and stabilization. The vertical lines represent the median values across different countries (n=17). The boxes show the 75th and 25th percentiles, respectively. The “whiskers” represent the 1.5 times of the interquartile interval (75th percentile − 25th percentile) and the circles represent the outlier values, exceeding the values of 1.5 × interquartile interval.

Table 4
Utilization of Robinia in Southern Europe based on inquiries addressing regional experts (columns B and C) and literature (column D).

<table>
<thead>
<tr>
<th>Type of utilization</th>
<th>Common use</th>
<th>Examples and references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timber, firewood, sownwood, veneer,</td>
<td>Bulgaria, Croatia, France, Italy, Moldova, Romania, Serbia</td>
<td>Timber, sawnwood and veneer (Bulgaria – Iliev et al. 2005; Romania – Niculescu et al. 2018; Croatia – Periš et al. 2017); production of small wood and domestic use of local owners (Portuguese, Spain, Slovenia, Bosnia and Herzegovina – e.g. Hasenauer et al., 2017); charcoal production (Italy - Servant et al., 2006; Moldova – Postolache, 2004); firewood (many countries, e.g. Bulgaria – Iliev et al. 2005; Greece – Alizoti, 2017; Moldova – Postolache, 2004; Romania – Niculescu et al., 2018).</td>
</tr>
<tr>
<td>charcoal, pole production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apiculture, medicinal or culinary</td>
<td>Bulgaria, Croatia, France, Italy, Macedonia, Romania, Serbia, Spain, Turkey</td>
<td>Honey production (most countries, mainly Turkey – BOEP, 2013; Sivacioglu and Sev, 2017; Bulgaria – Iliev et al., 2005; Romania – Niculescu et al., 2018); medicinal use (Kosovo – Mustafa et al., 2012; Italy – Pieroni and Quave, 2005; Moldova – Postolache, 2004; Serbia – Popović et al., 2012; Romania – Pieroni et al., 2015).</td>
</tr>
<tr>
<td>products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Italy, Moldova, Spain (Greece, Albania)</td>
<td>Short-rotation plantations, mainly Italy (Casol et al., 2010; Manzone et al., 2015; Crosti et al., 2016); Moldova – developing a bioenergy program (Gulca, 2009); utilisation of wood and wood processing residues from existing forests (Serbia – Ilić et al., 2004; Greece – EUBIONET, 2003).</td>
</tr>
<tr>
<td>Landscaping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protective plantations</td>
<td>Albania, Bulgaria, Croatia, Italy, Macedonia, Moldova, Romania, Serbia, Turkey</td>
<td>Soil protection, improvement, stabilization of slope (most countries, e.g. Iliev et al., 2005; BOEP, 2013; Hasenauer et al., 2017); Afforestation of badlands, sand dunes or mine heaps (Romania – Niculescu et al., 2018; Pele et al., 2008; Moldova – Postolache, 2004; Slovenia – degraded Karst regions, Brus et al., 2017; Turkey – Keskin and Makineci, 2009); Mixed stands planted as shelterbelts along roads and railways (most countries, e.g. BOEP, 2013; Marchante et al., 2014; Maslo, 2016; Niculescu et al., 2018).</td>
</tr>
<tr>
<td>Forest grazing, silvopastoral</td>
<td>France, Spain, south-eastern Europe</td>
<td>Basque areas (Spain, France) and most countries of south-eastern Europe (e.g. Mosquera-Losada et al., 2004); Fodder tree for direct consumption or dried food for domestic animals – Macedonia (Kraljic, 1960), Spain (Mosquera-Losada et al., 2004), Greece (Ainalis and Tsouvaras, 1998; Papachristou and Papamantellos, 1994).</td>
</tr>
<tr>
<td>system</td>
<td></td>
<td>Most countries, often restricted to settlements. Turkey – landscaping areas for recreational purposes (BOEP, 2013).</td>
</tr>
<tr>
<td>Ornamental cultivation</td>
<td>Bosnia and Herzegovina, Bulgaria, Croatia, Italy, Macedonia, Montenegro, Portugal, Romania, Serbia, Spain, Turkey</td>
<td></td>
</tr>
</tbody>
</table>
sion risk will result from the cessation of pasture or mowing. *Robinia* suckers form secondary dense stands much faster than native woody species and changes soil environment, as already mentioned above.

4. Stands in open land. These common, small-scale stands, are scattered in open landscape or settlements, hence they are often overlooked by both foresters and nature conservationists. Their environmental impact and related management are site-specific and may differ locally. For example, young spreading stands represent uncontrolled local invasion with critical impact on biodiversity if they occur close to semi-natural habitats, but they are rather harmless in ruderal environments or even a source of novel biodiversity and ecological niches in otherwise completely artificial environments of the cities. Protective stands planted on extremely degraded soils and steep slopes are included in this category.

4. Discussion

4.1. Distribution

Robinia is the most extensively cultivated alien tree in CE and SE (e.g., Křívánek et al., 2006; Nicolescu et al., 2018). In SE, *Robinia* was promoted only after successful testing as a promising forest tree in CE, mainly in Hungary and Germany (*Vítková et al., 2017*). Sparse plantations established by small-scale afforestation projects (e.g., Piccone, 1796) were followed by extensive campaigns running in some countries between 1850 and 1950 (e.g., Călinescu, 1941; Iliev et al., 2005; Gulca, 2009), and the process is still accelerating in several Balkan countries (e.g., Bulgaria, Moldova, Romania and Serbia: Jovkovic, 1950; Milosevic, 1950; Nicolescu et al., 2018).

A geographic range of periurban cultivation is much broader than that of plantations in natural conditions. Altitudinal distribution of *Robinia* is controlled by climate. Individual *Robinia* trees reach up to 1640 m a.s.l. in SE (Southern Alps: Sitzia et al., 2016a), while in CE there are only hardly surviving clonal patches over altitude of 500 m a.s.l. (*Vítková et al., 2017*). The main area of cultivation and invasive spread of *Robinia* is lowlands of both SE (Sitzia et al., 2016a) and CE (Cierjacks et al., 2013; *Vítková et al., 2017*), which is related rather to the historical utilization of the landscape than climatic and soil differences – as illustrated by the fact that both oceanic lowlands in northern Germany and warm lowlands along Danube harbour abundant *Robinia* populations.

4.2. Species composition and ecology

Our classification in five broad vegetation types is the first large-scale system for *Robinia* in SE. Types 1 and 2 in this study are specific and clearly distinguishable from other vegetation types. Open stands with dry-grassland species (Type 1) represent rare and extreme type described as a separate association *Melico ciliatae-Robinietum* (*Wilhelm et al., 2008*). These dwarf dry stands are replaced by other *Robinia*-dominated vegetation types on more suitable sites. They are ecologically analogous to CE association *Melico transsilvanicae-Robiniets* (*Vítková and Kolbek, 2010*). *Robinia* forests of Type 2, characteristic for precipitation-rich areas, are expected to have analogues impoverished in thermophilous species in the oceanic regions of northern France and British Isles. Vegetation types 3 to 5 require further study and a detailed comparison with validly published syntaxa is needed. The admixture of mesophilous nemoral trees, shrubs and herbs characterizing mesic woodlands of Type 3 occurs also in CE association *Chelidonio majoris-Robinietum* (*Vítková and Kolbek, 2010*). The SE type differs by sub-Mediterranean species, such as *Asparagus acutifolius, Helleborus bocconei* and *Lamium orvala*. Dry ruderal stands of Type 4 are rich in pasture and ruderal species. Their analogues reach up to Pannonian region in the north (Hungary, Czech Republic; e.g., Pocs, 1954 and own unpublished data) and Tunisia in the south where the ruderal *Robinia* stands with undergrowth dominated by *Bromus diandrus, Galactites tomentosus* and *Tarils arvensis* occur (e.g., Ain Draham region, own unpublished data). Mesic nitrophilous stands of Type 5 have similar species composition to semi-
spontaneous shrubby or tree stands in floodplains and periurban zones of eastern and south-eastern Europe (Arepieva, 2012; Golovanov and Abramova, 2013; Batanjski et al., 2015; Golub and Bondareva, 2017) and CE (Chytrý et al., 2013). Those are often dominated also by other aliens such as Acer negundo, Amorpha fruticosa and Fraxinus pennsylvanica. The ecological characteristics of the five distinguished vegetation types confirm that Robinia is a habitat generalist growing in dry to moderately wet habitats ranging from urban to agricultural landscape, to forest and natural grassland. In SE, natural seed dispersal is only effective in areas with high soil temperatures and/or disturbed bare soils, such as sand dunes (e.g. in Romania; Szatmari, 2012), gravelly bare soils along rivers (e.g. Spain, Italy, France and Montenegro; Castro-Díez et al., 2009; Terwei et al., 2013), transport corridors (across SE; e.g. Marchante et al., 2014; Maslo, 2016; Shehu et al., 2014), reclaimed mine spoils (e.g. Bulgaria, Greece, Romania and Turkey; Keskin and Makineci, 2009; Vlachodimos et al., 2013), and post-fire sites (e.g. Italy and Greece; Maringer et al., 2012). Clonal spread allows Robinia to easily escape from cultivation, therefore most of the invaded habitats in SE occur near its current and abandoned plantations.

4.3. Utilization and management

Robinia is broadly used in forestry and for landscaping across SE. Forestry use and residence time are main drivers of invasion similarly as in CE (Křivánek et al., 2006) but other large-scale human activities, such as soil protection or production of vineyard poles are also important. Unlike in CE countries where Robinia is historically cultivated for timber production in high forests (e.g. Vadas, 1914; Göhre, 1952), traditional forest management in SE includes a combination of silvopastoralism, coppicing, short-rotation forestry and variety of uses (e.g. Horvat et al., 1974). The range of Robinia utilization is much broader in SE than in CE, including both modern industrial processing and traditional rural uses. Especially in rural areas, the stands are multi-purpose, used for soil stabilization, wood production (i.e. timber, poles, roundwood, fuelwood and charcoal), non-wood products (i.e. fodder, honey, cosmetics and medicines), forest grazing, recreation, aesthetic and cultural purposes (e.g. Papachristou and Papanastasis, 1994; Postolache, 2004; Iliev et al., 2005; BOEP, 2013). Robinia is planted to supplement natural sparse stands degraded by coppicing, overgrazing or decaying of native trees after windthrows or epidemics, such as chestnut blight or aggressive root pathogen Phytophthora cinnamomi in oak forests (e.g. Thomas, 2008; Motta et al., 2009; Mosquera-Losada et al., 2012). Other inter-cropping plantations combined Robinia with various woody species including aliens to improve soil quality, yield and resistance to abiotic and biotic disturbances or diversity of food supply and nesting possibilities for birds (Guidi and Piussi, 1993; Benesperi et al., 2012; Kroftová and Reif, 2017). On the other hand, mixed stands can cause environmental problems due to invasiveness of alien trees (e.g. Medina-Villar et al., 2015; Lóczy, 2019).

Robinia plantations focusing only on production of wood or renewable bioenergy are less common in SE than in CE. Extreme caution should be taken following abandonment of plantations, because there is a great risk of Robinia invasion, depending on land cover types in the vicinity. The most threatened are abandoned arable land (Crosti et al., 2016), and dry and semi-dry grasslands (Vítková et al., 2017). Regularly managed buffer zone surrounding Robinia plantations should act as a biological barrier against resprouting root suckers (Crosti et al., 2016). Another problem is low succession rate due to depletion of nutrients in topsoil caused by low production of litter and periodic removal of organic matter, changed light regime and shift of species composition towards ruderal plant species (Vasilopoulos et al., 2007). In several countries, such as Moldova, Turkey and Albania, cultivation of Robinia for afforestation of highly degraded soils is the most important use.

Fig. 6. Comparison of the cultivation history of Robinia between Southern and Central European countries. Data for Kosovo are missing. Data from Central Europe were obtained from Vítková et al. (2017).
(e.g. Postolache, 2004; BOEP, 2013; Enescu and Dănescu, 2013; Cvetković et al., 2017). Although Robinia grows in subhumid to humid conditions in its native range, it was successfully introduced to many parts of the world where climatic conditions are much drier (Huntley, 1990). Very dense and plastic root systems with long horizontal ramets (Benčař, 1988) together with ecophysiological adaptations (e.g. Xu et al., 2009; Minucci et al., 2017) and fast recovery after drought stress (Moser et al., 2016) makes Robinia relatively drought tolerant in comparison with other native deciduous tree species.

4.4. Biodiversity conservation

Research on this species accumulated a body of evidence that the concerns resulting from its dominance as an invasive alien tree is justified. Pervasive metapopulations fundamentally threaten native ecosystems (e.g. Wilhelm et al., 2008; Mihai et al., 2012) and local biodiversity (e.g. Matus et al., 2003), and their later eradication would be costly and time-consuming with uncertain results (Vítková et al., 2016; Sádlo et al., 2017). Decrease in species diversity of Robinia stands in CE is caused by structural homogenization (Šibíková et al., 2019), soil eutrophication (Vítková et al., 2015) and dominance of nitrophilous ruderal species (Vítková and Kolbek, 2010) in tall and shady monocultures (Rédei et al., 2014) which are often mixed, light and heterogeneous in SE, thus the impact of Robinia is mitigated by share of other native trees, such as oaks. The homogenizing effect of the species is controversial, particularly in rural landscapes (Sitza et al., 2012), but the species composition (Nascimbene et al., 2012; Campagnaro et al., 2018b; Allegrezza et al., 2019) and ecosystem processes (Sitza et al., 2018) are always changed in comparison with native tree stands. Diverse forms of silvopastoral management (Rigueiro-Rodríguez et al., 2009) combined with coppicing (Vacík et al., 2009) are often used due to historical reasons, especially in Balkan countries. Optimal management intensity supports a variety of small-scale disturbances, creating a wide range of light and shade conditions, coexistence of nutrient-poor and rich sites and heterogeneous vertical and horizontal vegetation structure (Bergmeier et al., 2010). In dry open habitats, water stress leads to stunted growth and dwarfism of Robinia (Jin et al., 2011), which together with its slow propagation, weak nitrification and shading effect (Vítková et al., 2015; Sádlo et al., 2017) allow for the survival of native flora and fauna.

In habitats and species of conservation value, the impact of Robinia is still a major one in SE. However, a small proportion of pure or mixed Robinia stands in the landscape may even increase its structural, functional and cultural diversity (Fig. A3; Campagnaro et al., 2018b), especially in urban areas (Sitza et al., 2016c). Therefore, complementary approaches to mitigate risks related to the use of invasive Robinia in plantations should be further investigated, implemented, and regularly revised (Brundu and Richardson, 2016). A site-specific management for planted or spontaneous Robinia woodlands will consider several stand scale options, such as reducing or suspending coppicing, particularly of stands that are close to valuable open habitats, such as Natura 2000 habitat types. Furthermore, the maintenance, through mowing or grazing, of the adjacent open habitats would increase their resistance to invasion (Sitza et al., 2016b).

The technical regional literature provides many examples of how the invasiveness of Robinia can be controlled and its beneficial services should be valued without threatening other ecosystem services provided by adjacent forests and non-forested habitats. Mullaj et al. (2017) offer environment-friendly solutions to select native resistant species instead of aliens for reforestation of degraded lands and urban environments.

5. Conclusions

We provide an original comparative and synthesizing study evaluating the environmental impact of Robinia at local and regional scales in Southern Europe, based on a new vegetation analysis linking with ecological and cultural aspects. Although Robinia is a controversial invasive alien tree species, it is established as a constant component of landscapes, which is evidenced by the fact that in some countries it is sometimes perceived as native (e.g. Turkey), and has become an important part of the economy in other countries (e.g. Bulgaria, Romania). We explored both sides of Robinia planting and related context: (i) distribution of Robinia in SE, (ii) regional differences in its cultivation history, (iii) diversity of habitats, vegetation and management approaches, (iv) invasiveness and associated problems to nature protection, (iv) ecological risks vs multifaceted utilization of this alien tree; (iv) and drivers and constraints determining the current distribution of Robinia with potential future impacts of this invasion.

The enthusiasm for Robinia cultivations given by its wide habitat tolerance and miscellaneous utilization is easily understandable. Historical experience clearly shows that almost all countries, in which the tree was successfully established, underwent a phase of large-scale cultivation and afforestation. Our results confirm that it is difficult to answer an important question, whether Robinia should be cultivated and promoted, widely tolerated, or eradicated as a dangerous invasive alien in the landscape of SE. Clear recommendations can be concluded on a local scale only, for example in case of cultivated Robinia forests vs neighbouring spontaneous stands spreading into valuable habitats with endangered species. Highly variable landscape of SE, both in terms of natural and cultural environment, requires a stratified approach. Each decision must be highly context-dependent, simultaneously accounting for regional attitude to cultivation of Robinia and ecological, conservation, and economic aspects.

Acknowledgement

We thank the custodians of the European Vegetation Archive, who are listed in Table 1, for providing data from regional databases. We thank also Martin Hejda for performing a statistical analysis of invasion drivers and for valuable comments on the manuscript. Our thanks are also due to regional experts who participated in the inquiry on invasiveness, invaded habitats, cultivation and management in Southern Europe, or assisted in our search: Siniša Andrašev, Cristina Arcocha, Frederic Andreiu, Zoltan Barina, Milena Bataković, Thomas Campagnaro, Juan Antonio Campos, Martina Dodan, Fanny Dommarten, Nikołos Grigoriadis, Sead Hadžiabla-hović, Irina Irimia, Cristina Măguș, Semir Maslo, Elizabete and Hélia Marchante, Rossella Marucci, Quenan Maxhuni, Mehmet Metaj, Aleko Miho, Ana Novoa, Biljana Panjković, Sanja Perić, Mila Ristic, Bojan Simovski, Culitića Sirbu, Stefano Tasinazzo, Teodora Trichkova, Vladimir Vladimirov, Gavril Xanthopoulos, Ayşe Yazlik, Haki Zoto. We thank Simone Iacopino for gathering and standardizing data of Italian relevés and georeferencing those lacking geographical coordinates, Livio Poldini and Davide Ubaldi for sharing relevés data from central and eastern Italy, respectively. We thank also Jan Pergl, Jan Čuda and the reviewers for valuable comments, Desika Moodley for editing the English, Ivana Rajzno- verová and Anna Větvíčková for technical assistance.

Funding

This work was supported by the Czech Science Foundation [EXPRO grant no. 19-28807X; project no. 17-19025S]; COST [project no. LTC18007]; Czech Academy of Sciences [long-term
research development project RVO 67985939; University of Padova [project no. CDPA151999/15].

Authors’ contributions

This study was conceived and led by Michaela Vitková and Jiří Sádlo who obtained all data and also wrote the manuscript. Jan Roleček mainly conducted statistical analyses, Petr Petřík managed the JUICE databases, Tommaso Sitzia provided several relevés from Italy, and supervised the management and legislation topics. Jana Müllerová created the map of distribution and invasion risk in a GIS environment. Petr Pyšek was a supervisor of the study who helped with valuable comments to improve the final work. All authors discussed the results, commented on the manuscript as it progressed, approved the final version to be published and agreed to be accountable for the aspects of the work.

Conflict of interest

The authors declare no conflict of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2019.134857.

References

Círovic´, R., 1941. Plante sca ˘pate din cultura˘. Important _ i istorica˘.

Firenze.
Richardson, D.M., Pyšek, P., Rejmánek, M., Barbour, M.G., Panetta, F.D., West, C.J.,
Remon, E., 2006. Tolérance et accumulation des métaux lourds par la végétation
Rizzi, D., 1847. Trattato sulla coltivazione della robinia falsacacia per riparare alla
Roy, D., Alderman, D., Anastasiu, P., Arianoutsou, M., Augustin, S., Bacher, S., Bas
Rotaru, A., 2003. The Forest Resources of Republic of Moldova – actual situation and
Ruppert, J., 2013. “Herbivory by forest insects in different forest types in dendromass.
tacto-macrofauna and macroinvertebrates and the role of alien trees. Silva Balcanica
Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. In: Geobot. 5, 3–41.
Rivas-Martínez, S., Rivas-Sáenz, P., Penas, A., 2011. Worldwide bioclimatic
classification system. Global Geobotany 1, 1–634.
Rizzi, D., 1847. Trattato sulla coltivazione della robinia falsacacia per riparare alla
Romeo, T., 2003. The Forest Resources of Republic of Moldova – actual situation and
Rosa, M.F.E., 2013. As Árvores Ornamentais Introduzidas nos Jardins de Lisboa: uma
perspectiva histórica (séc. XVIII-XIX). MSc thesis presented. to the Instituto
Superior de Agronomia, Universidade de Lisboa.
Rotaru, A., 2003. The Forest Resources of Republic of Moldova – actual situation and
Rosa, M.F.E., 2013. As Árvores Ornamentais Introduzidas nos Jardins de Lisboa: uma
perspectiva histórica (séc. XVIII-XIX). MSc thesis presented. to the Instituto
Superior de Agronomia, Universidade de Lisboa.
Sitzia, T., Cierjacks, A., de Rigo, D., Caudullo, G., 2016a. Robinia pseudacacia
europea in distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de
Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., (Eds.), European Atlas of
166–167.
Biologica Nysana 1 (1–2), 35–42.
Satmari, P.M., 2012. Alien and invasive plants in Carei plain natural protected area,
Western Romania: Impact on natural habitats and conservation implications.
South Western J. Hortic. Biol. Environ. 3 (1), 109–120.
Terwee, A., Sarwe, Z., Zeilis, A., 2013. What is the factors controlling tree seedling establishment in North Italian floodplain forests invaded by
10.1016/j.foreco.2013.05.003.
Thomas, F.M., 2008. Recent advances in cause-effect research on oak decline in
Tichý, L., Chytry, M., 2005. Modified TWINSPAN classification in which the hierarchy
Tichý, L., Chytry, M., Botta-Dukát, Z., 2014. Semi-supervised classification of
vegetation: preserving the good old units and searching for new ones. J. Veg.
Inventory 2012. Kosovo Ministry of Agriculture Forestry and Rural Development/Norwegian Forestry Group.
org/10.1111/ddi.12108.
differentiation in Greek Fagus forest vegetation. J. Veg. Sci. 18 (5), 743–750.

