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Preface

Insects comprise the vast majority of known species on Earth and are ubiq-
uitous in terrestrial ecosystems, playing essential roles in ecosystem services.
Insects are the most diverse and abundant animals sharing our world, yet
many experts have warned that the global insect decline in the Anthropo-
cene is a reality. Conservation initiatives are, therefore, increasingly neces-
sary and must be implemented worldwide to safeguard individual species.
One of the main causes of insect extinctions and diversity decline is the
spread of invasive alien species. This book explores how invasive alien spe-
cies affect insect diversity worldwide and provides future directions on what
could be done to mitigate their impacts and restore invaded habitats. It pre-
sents a comprehensive overview of knowledge, incorporating relevant in-
formation from the most recent research findings, and addresses the main
issues resulting from the impact of biological invasions on insect assemblages.

Written and edited by international experts on invasion ecology and in-
sect conservation, this book consists of multiple chapters that explore the
role of global change and invasive species in altering the structure of habitats
and how they induce global insect decline. The authors discuss how the in-
troductions of various groups of organisms, from bacteria and plants to in-
sects and vertebrates, affect the current decline in insect diversity. The
final part of this book delves into existing monitoring and management
programs, including citizen science and invasive species management, and
explores their potential as future socio-ecological solutions to mitigate these
threats.

The first chapter presents the rationale of the book and the background
for discussing the role of biological invasions in the global insect decline
from the perspective of current global change. The second chapter
highlights the importance of biodiversity conservation, the benefits of
biodiversity for ecosystem health, and the role of insect diversity in
ecosystem functioning. The third chapter emphasizes the current global
decline in insect populations and the main factors underlying this phenom-
enon. Chapter 4 discusses the importance of global trade as a driver of
biological invasions. Part II (Chapters 5e9) addresses threats to insect
diversity from different kinds of alien organisms, from bacteria and plants
to vertebrates. These chapters unravel invasive species’ direct and indirect
impacts on native insect diversity by showing case studies where invasive

xvii j



species have affected certain insect species. Part III (Chapters 10e12) reviews
the importance of establishing monitoring and management programs to
prevent, detect, and control biological invasions. It includes examples of
successful citizen science projects and management methods to restore insect
diversity and areas degraded by invasive species. The book concludes by
emphasizing the need to improve international trade regulations, encourage
public participation in insect conservation, and implement management
actions to combat invasive species and promote insect conservation.

The intended target audience for this book is not only graduate students,
researchers, and qualified personnel specialized in biological invasions and
insect conservation but also the public interested in nature. It is of value
for academic purposes (libraries and universities). Environmental agencies,
NGOs, and communities concerned with the conservation of insect diver-
sity and the impacts of invasive alien species may also be interested in the in-
formation included in this book.

xviii Preface



Acknowledgments

We really appreciate the stimulating comments and suggestions from the
reviewers that helped to improve the chapters and the book in general. We
are grateful for their efforts and the time they invested in making this
valuable contribution. Reviews consisted of three stages, including informal
reviews of the chapters at an early stage, formal peer reviews of the chapters
by leading renowned specialists organized by the editors, and final content
reviews conducted by the editors throughout the book for publication
approval. With special mention, we would like to thank Adolfo Cordero-
Rivera for his valuable help and support in the initial stage of our book,
as well as the lively minds and help of Beatriz Rodriguez-Salvador and Noa
N�u~nez-Gonz�alez throughout its preparation.

Many authors kindly made available their own figures, drawings, and
diagrams. Some other figures have been redrawn to standardize formats and
simplify some information from the originals. Every effort has been made to
obtain the necessary permissions, and the publisher would appreciate advice
on any inadvertent omissions or corrections to be included in any future
editions or imprints.

Finally, we acknowledge the support of the Elsevier staff. We thank our
Senior Acquisitions Editor, Anna Valutkevich, for her encouragement,
friendship, and continued assistance. We also appreciate the continuing
support of our Acquisitions Editor, Kelsey Connors. Finally, we would like
to thank our Project Managers, Catherine Costello and Omer Mukthar, for
their efficient handling of our requests and for their practical help and patient
advice during the production of the book.

xix j



This page intentionally left blank



CHAPTER ONE

Biological invasions: a global
threat to insect diversity
Noa N�u~nez-Gonz�alez1, Ana Novoa2, Petr Py�sek2,3 and
Jonatan Rodríguez2,4
1Department of Plant Biology and Soil Sciences, Faculty of Biology, Universidade de Vigo, Vigo, Spain
2Department of Invasion Ecology, Institute of Botany of the Czech Academy of Sciences, Pr�uhonice, Czech
Republic
3Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
4CRETUS, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de
Compostela, Santiago de Compostela, Spain

The challenge of insect conservation in the 21st
century

Insects constitute the vast majority of known species around the
world, comprising approximately 50% of the total species on Earth (Gri-
maldi & Engel, 2005; Stork, 2018). Currently, more than one million insect
species are described, but many others remain undiscovered mainly due to
detection limitations (e.g., small size and habitat complexity; Chapter 2). In-
sects are ubiquitous in terrestrial ecosystems, yet many authors have warned
about the global decline of insects in the Anthropocene (Cardoso et al.,
2020). The decline in insect diversity has been repeatedly demonstrated
and intensively discussed in scientific and popular literature and media.
There are well-documented examples that point to worrying regional de-
clines, and therefore, immediate action must be taken to reverse this trend
(Kawahara et al., 2021; Samways et al., 2020). However, the reality is
much more complex, as illustrated by some insect groups, regions, or partic-
ular circumstances (see Chapter 3).

Insects are fundamental to the proper functioning of ecosystems and pro-
vide a wide range of ecosystem services (see Chapter 2). For example, insects
pollinate plants, provide food to other organisms, including humans, and
act as decomposers of organic matter (Grimaldi & Engel, 2005; Samways
et al., 2020). However, the diversity of insects is rapidly declining, and
their conservation is threatened by several components of global change
(Harvey et al., 2020; van der Sluijs, 2020). In fact, the current global insect
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decline is often referred to as the “Insect Decline Syndrome”, which is a
complex, multifactorial, nonlinear, and context-dependent phenomenon
(see Chapter 3).

Anthropogenic climate change is often considered to be one of the main
threats to insect biodiversity (Cardoso et al., 2020; Wagner et al., 2021). For
example, increasing temperatures can affect the developmental cycles and
behavior of insects, change their niches, shift their distribution ranges,
form altered species communities, desynchronize phenologies, decouple
species interactions, and affect food webs (Halsch et al., 2021; Wilson
et al., 2007). Habitat degradation and fragmentation is also one of the
most severe threats to insect conservation (IPBES, 2019), especially of
specialized insect species that are restricted to a specific microhabitat within
an ecosystem or confined to a single host (Pozsgai et al., 2022; Steffen et al.,
2015). Environmental pollution, such as eutrophication (Abrahamczyk
et al., 2020) or light pollution, can influence the behavior, biorhythms,
developmental processes, and reproduction of native insects (Owens &
Lewis, 2018) and attract predatory insects (Heiling, 1999). The use of insec-
ticides has also severely harmed insect assemblages. For example, some of the
most widely used insecticides are compounds of the neonicotinoid group
(Sgolastra et al., 2020), which interfere with the nervous system of insects.
In many cases, these pesticides are applied directly to seeds (i.e., seed
coating), making not only them but the entire plant toxic to insects and
even persisting and affecting other insects of the food chain (Calvo-
Agudo et al., 2019; Rundlöf et al., 2015. Furthermore, many pesticides
are known to have high persistence in soil and are soluble in water (Goulson,
2013), can be transported with airborne particles, and thus may affect distant
ecosystems (Nascimento et al., 2017). It should be noted that not only in-
secticides can kill insects, but also herbicides, fungicides, and other pesticides
can adversely affect them (McArt et al., 2017) or other arthropod fauna,
which can have serious consequences in food webs (Hallmann et al.,
2014). Finally, the invasion of alien species can also seriously threaten the
conservation of native insects.

What is an invasive species?

Globalization e the growing interdependence of the world’s econo-
mies, cultures, and human populations e is accelerating the intentional and
accidental introductions of species to regions beyond their natural biogeo-
graphic boundaries (see Chapter 4). Intentional introductions include the
international trade of alien ornamental plants (Hulme et al., 2018;
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van Kleunen et al., 2018), pets (Duggan et al., 2006; vanWilgen et al., 2010),
insects used for agriculture and other commercial purposes (Bang & Courch-
amp, 2021; Colla et al., 2006; Roy & Wajnberg, 2008) or noninsect inver-
tebrates such as crayfish or shrimp used as food or bait (Hasson et al., 2006;
Kilian et al., 2012). Moreover, alien species are often unintentionally intro-
duced, for example, as contaminants, stowaways, or via corridors such as the
Suez Canal (Saul et al., 2017). Consequently, the current global rate of in-
troductions of alien species (i.e., species introduced to areas outside their
native ranges; Blackburn et al., 2011; Essl et al., 2018) appears higher than
ever and shows no signs of saturation (Seebens et al., 2017).

Of all introduced species, a small proportion become invasive, (i.e., sur-
vive, form self-replacing populations, and spread rapidly over substantial dis-
tances; Py�sek et al., 2004; Richardson et al., 2000). The invasion success of
alien species depends on a combination of factors (i.e., the traits of the alien
species, the characteristics of the introduced areas, and the way the species
are introduced and disseminated; Py�sek, Bacher et al., 2020) and various
direct and indirect natural and anthropogenic drivers, such as climate
change, land-use change, or cultural processes (Py�sek, Hulme et al., 2020).

The impacts of biological invasions

Invasive species can cause severe negative socioeconomic and envi-
ronmental impacts in the invaded areas. For example, they can reduce the
benefits derived from ecosystem services, such as water provisioning and
quality, crop yield, or soil productivity (Vil�a & Hulme, 2017), affect human
health, infrastructure, or recreational and aesthetic values of invaded areas
(Bacher et al., 2018), and cause significant economic losses (Diagne et al.,
2021). Negative environmental effects caused by invasive species include
impacts on native taxa through competition, predation, hybridization, the
transmission of diseases, parasitism, toxicity, or biofueling (Blackburn
et al., 2014; Kumschick et al., 2020), changes to ecosystem functioning
(Gaertner et al., 2012; Vitousek et al., 1997), or indirect impacts through dis-
ruptions of biotic interactions (David et al., 2017; Richard et al., 2019),
antagonistic (Rodríguez et al., 2019, 2021) and/or mutualistic (Traveset &
Richardson, 2006, 2014) (see Fig. 1.1). Invasive species can also generate
novel interactions in the invaded areas (Castells et al., 2014; Prior et al.,
2015) and, consequently, cause community-level changes in species interac-
tion networks that can result in the replacement of native species by aliens
(Rodríguez et al., 2019, 2021). Moreover, biological invasions are
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Figure 1.1 Some examples of invasive alien species representing different environ-
mental impacts via disrupting antagonistic and mutualistic interactions in Galicia,
Spain. The Australian invasive woody tree Acacia dealbata accumulates antagonistic
herbivorous insects such as (A) the native spittlebug Cercopis intermedia and (B) the
alien cottony cushion scale Icerya purchasi introduced from Australia. Similarly, the suc-
culent plant Carpobrotus edulis is attacked by its natural South African enemy, (C) the
iceplant scale Pulvinariella mesembryanthemi, while the Eurasian ant Formica rufa
eats the scale honeydew. On the other hand, the capeweed Arctotheca calendula at-
tracts with its showy flowers (D) the native coleopteran Oxythyrea funesta, which favors
its pollination. Other introduced invasive plants such as Bidens aurea and C. edulis
attract with their large and beautiful flowers European pollinators such as (E) the hon-
eybee Apis mellifera and (F) the buff-tailed bumblebee Bombus terrestris. The establish-
ment of these novel interactions may disrupt native planteinsect interactions
(Bartomeus, Fr€und, & Williams, 2016; Rodríguez et al., 2019, 2021, Traveset & Richard-
son, 2014). Photographs from Jonatan Rodríguez.
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recognized as one of the five most significant direct drivers of biodiversity
loss (Chase et al., 2020; IPBES, 2019; Wagner & Van Driesche, 2010). A
detailed discussion of the different aspects of biodiversity that may be
affected by biological invasions is presented in Chapter 2.

Although natural ecosystems can generally tolerate the loss of a small
portion of species as long as it does not involve the loss of functions (Lawton,
1994; Naeem, 1998), the introduction of invasive species could lead to
cascading extinctions that drive declines in insect abundance and diversity
(e.g., cascade effect; Bucciarelli et al., 2019; Kehoe et al., 2021). One of
the reasons why invasive alien species can induce such impacts is because
they can occupy the functional and phylogenetic space of native species
(Loiola et al., 2018).

The impact of biological invasions on insect diversity

In this book, we aim to discuss the role of biological invasions in the
global decline of insect diversity. The spread of invasive species is one of the
main factors driving the insect decline (Cardoso et al., 2020; Tallamy et al.,
2021). Previous observations suggest that invasive species can impact native
insect species (Wagner & Van Driesche, 2010) and species interactions
(Richard et al., 2019). This may result in the loss of specialized insects
(Villa-Galaviz et al., 2012) and cause changes in ecosystem functions (García
et al., 2014; Kaiser-Bunbury et al., 2017; Schleuning et al., 2015). Thus, al-
terations in biodiversity and ecosystem functioning caused by invasive spe-
cies may affect not only native insect assemblages but also their functional
roles in the community (Clusella-Trullas & Garcia, 2017; Litt et al., 2014).

In relation to the abovementioned, the impacts of invasive plant species
on insect diversity may vary depending on the taxonomic group and func-
tional role of the affected insects (see Chapter 5). For example, plant inva-
sions have strong negative impacts on primary consumers (Rodríguez,
Cordero-Rivera et al., 2020; Rodríguez, Novoa et al., 2020), reduce the
abundance of specialist phytophagous insects (Rodríguez et al., 2021) and
pollinators (Moro�n et al., 2009), and increase the abundance of generalist
phytophagous insects (Rodríguez et al., 2019) and pollinators (Bartomeus,
Fr€und, & Williams, 2016; Gillespie & Elle, 2018) that are attracted to this
new source of food. Furthermore, some authors noted that the often
increased amount of soil organic matter present in areas invaded by alien
plants rarely benefits detritivorous insects (Castro-Díez & Alonso, 2017),
especially specialized detritivores (Wolkovich et al., 2009). On the contrary,
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the presence of invasive plants may benefit predatory insects, if these second-
ary consumers are attracted by the often increased abundance of generalist
herbivores in areas invaded by alien plants (Gomes et al., 2018; Van der Colff
et al., 2015).

Invasive insects can also play an important role in the decline of native
insect populations on a local scale (Kenis et al., 2009; Wagner & Van Drie-
sche, 2010) through predation and parasitism, competition, the transmission
of pathogens and diseases, and hybridization (Kenis et al., 2009). However,
studies demonstrating the role of invasive insects in the global insect decline
are lacking (see Chapter 6). Moreover, the intentional or accidental intro-
duction of alien insects could facilitate the cointroduction of potential path-
ogens that may result in a “spillover” to wild insects (Eilenberg et al., 2015;
Manley et al., 2015; Vilcinskas, 2019). During the last decades, some authors
have warned about the threat posed by cointroduced pathogens that can
impact native insect populations (see Chapter 9). However, to date, few
studies demonstrate the direct role of cointroduced pathogens in native in-
sect decline (Wagner & Van Driesche, 2010).

Other groups of introduced organisms, such as alien noninsect inverte-
brates (see Chapter 7) or vertebrates (see Chapter 8), can also have direct
or indirect impacts on native insect populations. However, as with intro-
duced insects and cointroduced pathogens, most impacts have only been
investigated for individual species or at the local scale. Studies documenting
the overall impacts of alien noninsect invertebrates or vertebrates on native
insect populations and long-term studies measuring the effect of these im-
pacts on insect abundance and diversity are scarce. Although relatively little
is known to date about how invasive vertebrates may negatively affect native
insect biodiversity, it is likely that these invaders interact directly or indi-
rectly with native insect populations wherever they are introduced (Miller
& Crowl, 2006; Volery et al., 2021).

Aims and scope of this book

Overall, this book aims to provide an overview of current knowledge
on the role that biological invasions play in the global insect decline
(Chapters 2e10) and discuss what could be done to mitigate the impacts
of invasive species on native insect communities (Chapters 11 and 12).
The information included in the following chapters illustrates that, although
invasive alien species can play an important role in the decline of native in-
sect populations at local scales, much remains to be explored to demonstrate
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the impacts of invasive species on large-scale insect conservation. In fact,
most studies to date have focused only on a particular insect species or taxo-
nomic group, and few consider their functional and trophic roles (Spafford
et al., 2013). This book represents a first step in highlighting the importance
of managing and preventing the entry and spread of invasive species to pro-
tect global insect diversity.

As detailed in Chapter 2, insect diversity constitutes a key factor in the
homeostasis of planet Earth. Yet, the perceived value of insects often differs
between the scientific/naturalistic community and the public. Therefore,
the main purpose of this book is to highlight the importance of insects for
the functioning of natural ecosystems and to create awareness about the
contribution of biological invasions to the global insect decline. It should
be noted that insects are often at the center of conservation management
plans when they produce economic costs by becoming pests (Chapter 2).
However, conservation plans or strategies aiming to enhance native insect
populations are often a low priority (Chapter 12; Dunn, 2005; Titley
et al., 2017). This is probably due to the difficulty of identifying insect spe-
cies caused by their small size, the huge number of taxa, and the variety of
habitats they live in. Consequently, this limitation constrains our ability to
characterize their conservation status and the environmental threats they
are exposed to (Mili�ci�c et al., 2021; Titley et al., 2017).

Invasive species management (i.e., preventing the introduction of future
invasive species and managing current invasions; Robertson et al., 2020) is
essential to protect native insect diversity (see Chapter 12). However, the
measures established to date to mitigate the introduction of potentially inva-
sive species appear insufficient. For example, countries set their own criteria
for the importation of insect species considering the effect of their pathogens
on humans or vertebrate hosts but not on native invertebrates (Bang &
Courchamp, 2021). Legal regulations on the use of insects vary between
countries, and precise standards on safety, marketing, and animal welfare
are largely lacking (L€ahteenm€aki-Uutela et al., 2017, 2021).

Engaging the general public is crucial for insect conservation. Indeed,
citizen science is an emerging discipline that may be essential for biodiversity
monitoring, especially for monitoring the distribution of invasive species and
for favoring insect conservation (see Chapter 11). With the help of the pub-
lic and the use of new technologies, it would be possible to engage citizens in
monitoring biodiversity, both for detecting new invasions and performing
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diversity inventories or BioBlitz1 related to insect assemblages. The number
of citizen science initiatives and participants has increased pronouncedly in
the last few decades (Chandler et al., 2017; Johnson et al., 2020; Pocock
et al., 2017). This increase has also been observed in the thematic area of bio-
logical invasions, with many projects focusing on invasive species, including
insects, and even insects used as biocontrol agents that help to control inva-
sive plants (see Chapter 11). At the end of this book, we discuss how to pre-
vent the impacts of future invasions, suggesting that international biosecurity
policies should be strengthened (see Chapter 12).

In summary, this book discusses how the introduction of all kinds of or-
ganisms, from bacteria and plants to vertebrates, affects the current decline in
insect diversity. The latter portion of this book delves into existent and
future monitoring and management programs, including citizen science
and restoration ecology, as socioecological solutions to combat this
phenomenon.
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CHAPTER TWO

Biodiversity and the importance
of insect diversity
Iago Sanmartín-Villar and Adolfo Cordero-Rivera
Universidade de Vigo, ECOEVO Lab, Escola de Enxe~naría Forestal, Pontevedra, Galiza, Spain

What is biodiversity?

Biodiversity is a theoretical metaconcept based on the relationship be-
tween natural and functional concepts, which was proposed to raise aware-
ness about nature conservation (Cordero-Rivera, 2017) and with the
specific goal of highlighting the relevance of biological diversity in social
and political discussions (Takacs, 1996). In short, biodiversity refers to the
variety of living beings at all levels of organization. Although biodiversity
is classically divided into three different levels (Fig. 2.1), namely genetic, spe-
cies, and ecosystem diversity, there is wide evidence that other views, like
functional or taxonomic diversity, must be taken into account when discus-
sing about biodiversity conservation. Here, we also focus on another
neglected level of biodiversity, the behavioral variability, or ethodiversity
(Cordero-Rivera, 2017), a kind of phenotypic diversity that is transversal
to the biological hierarchy, as it can be found at the level of genes, species,
and ecosystems, and is therefore very relevant in the process of adaptation.

Genetic diversity
Genes are considered the basic unit of inheritance because they contain the
minimum genetic information needed to synthesize a functional molecule,
which can affect individual fitness. Therefore, genes constitute the smallest
unit affected by natural or sexual selection, and by random factors like ge-
netic drift or founder effects (Nei et al., 1975). In sexual species, the main
source of genetic diversity is the recombination of the DNA of the gametic
cells, which determines the apparition of new information that was not pre-
sent in the progenitors, a process that can be accentuated by mutations.
Reproductive strategies (the degree of polygamy) or bet-hedging (the
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production of offspring with different phenotypes (Slatkin, 1974) allow pro-
genitors to increase the genetic variability of their offspring, which might be
advantageous in unstable environments. Polygamy is clearly advantageous

Figure 2.1 Scheme showing the levels of biodiversity and the ecosystem services pro-
vided by insects. Three different levels (genetic, species, and environmental) are usually
consideredwhen analyzing biodiversity. Genes: two females of the same species (Ischnura
genei) show different body coloration due to the variability of their alleles. Species: two
species of different orders (Hymenoptera and Coleoptera). Ecosystems: aquatic and
terrestrial ecosystems. We highlight the relevance of behavior in the study of diversity
and its transversal action through the aforementioned levels of biodiversity. Supporting:
insects decompose and utilize organic matter. Ants from the genus Crematogaster eating
a lizard corpse (main image); dung beetles (Scarabaeoidea) collecting (upper circle) and
transporting (lower circle) feces for further consumption. Provisioning: insects produce
resources that can be used by other animals. A honeybee leaves a flower after collecting
its nectar and pollen (see the brownish buildup on the bee’s posterior legs in the main
image); in the beehive, the nectar will be transformed into honey (upper circle); ants farm
aphids to collect honeydew (lower circle). Regulation: insects balance environment
mechanisms with their actions. A wasp and a beetle pollinating a flower (main image);
termites built a nest (upper circle), which can control droughts (Ashton et al., 2019); a
damselfly (Ischnura elegans) preys on an Ephemeroptera (lower circle) and thus controls
its population density. Cultural: insects attract our interest because of their morphology
and behavior. Sculpture of a dragonfly in Cienfuegos (Cuba; main image); a student col-
lects ants for a science experiment (upper circle); a man lies on the ground to photograph
an insect on the ferns (lower circle). All photos were taken by Adolfo Cordero-Rivera and
Iago Sanmartín-Villar except the picture of a bee on a pink flower and that of a jar of honey,
which were taken by Anxos Romero Barreiro.
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for males (Bateman’s principle; Bateman, 1948), but it is now evident that
females also benefit from multiple matings in most species (Fromonteil
et al., 2023), and this is particularly true in insects where males provide fe-
males with nuptial gifts, in the form of food or spermatophores. Monandry
in female insects results in a reduction of 18% of fecundity when compared
with females mating several times (Cordero-Rivera, 2022). Polyandric fe-
males might choose the sperm of the best mate or use sperm from different
males to fertilize their eggs (reviewed in Simmons, 2005), increasing the ge-
netic variability of their offspring.

Genetic variability was traditionally measured focusing on morpholog-
ical traits, but nowadays molecular methods are frequently used. These
methods are essential to discriminate between species with little morpholog-
ical differences (for example, several African fruit flies; Virgilio et al., 2013),
and allow the reconstruction of robust phylogenies. For instance, termites,
considered a separate order (Isoptera) due to their eusocial organization,
have been found using molecular methods to be closely related to cock-
roaches (Blattodea). Although the full genome of several insect species is
currently known, molecular analyses that aim to elucidate genetic diversity
frequently focus on certain regions of the DNA showing high variability (for
instance, microsatellites). Currently, the most used techniques to estimate
genetic variability are based on the polymerase chain reactions, DNA
sequencing and array, cytogenesis, and gene expression profiling.

The relevance of genetic variability in conservation is of utmost impor-
tance because it is the basis for adaptation. The decline in genetic variability
is a current concern in the conservation of wild vertebrates, and successful
cases of genetic rescue (Vila et al., 2003) demonstrate the relevance of main-
taining genetic diversity. However, the conservation of genetic variability,
and particularly the use of genetic rescue, is an underutilized conservation
strategy in programs focused on insects (Roitman et al., 2017).

Phenotypic diversity
Phenotypic diversity is the result of the interaction of genes and the environ-
ment. Species showing several discrete phenotypes (polymorphism) can
cope with environmental pressures using different evolutionary strategies.
For instance, in damselflies (Odonata), color polymorphism allows females
to reduce male harassment (Van Gossum et al., 2008). In some species, males
are also polymorphic in color and/or behavior, obtaining matings using
different strategies (territorial or sneaky; Watanabe & Taguchi, 1997;
Fig. 2.2A and B). A particularly interesting example of phenotypic variability
is the aphid Paracletus cimiciformis, in which one morph gives honeydew to
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ants in exchange of protection, while another morph chemically cheats ants
to be carried to the nest where it predates ant larvae (Fig. 2.2C) (Salazar et al.,
2015), a strategy also performed by larvae of Maculinea butterflies (Thomas
et al., 1998). In some social species, such as ants, different phenotypes are

Figure 2.2 Examples of genetic (AeD), behavioral (AeD), species (AeD), and
ecosystem (E) diversity. The genetic polymorphism of male damselfly Mnais gregoryi
(China) generates two reproductive strategies in the same population: color-winged
males (A) defend territories in which females lay eggs and hyaline-winged males
(B) enter the territories of the territorial males to steal the females that they were pro-
tecting. (C) The aphid Paracletus cimiciformis phenotype mimics the chemical com-
pounds of the ant larvae to be carried to the ant nest and feeds on their larvae. (D)
Soldiers and workers differ in morphology and function in several ant species as in
the army ant, Eciton burchellii (Jatun Sacha Biological Station; Ecuador). (E) Termite ca-
thedrals (“Baga-Baga” in Bissau-Guinean Creole) built in Guinea-Bissau. Photos: A, B, D, E:
Iago Sanmartín-Villar. C: courtesy of Adri�a Miralles.
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specialized on developing different tasks for the colony. Generally, queens
possess more robust thoraxes and larger abdomens to contain the muscles
needed for the nuptial flight and for ensuring the oviposition through years,
while workers could be homogeneous, show different sizes, or coexist with
another phenotype - the soldiers - which possess larger heads than workers
to contain stronger mandible muscles (Fig. 2.2D). Polymorphism is main-
tained in social insects due to their behavioral specialization, but in solitary
insects, polymorphism is frequently maintained in the population due to the
variation in success of each phenotype across time (Cordero, 1992), and/or
space (i.e., geographical clines; Takahashi et al., 2011).

Obviously, evolution is not always driven toward increasing phenotypic
variability, given that natural and sexual selection act by favoring some phe-
notypes over others. Unfavored phenotypes may disappear in certain popu-
lations due to environmental pressures (Corl et al., 2010). For example, the
damselfly species Mnais costalis and Mnais pruinosa from the Kinki area in
Japan lose one of the male phenotypes in sympatric populations: the former
loses the hyaline wing phenotype, while the latter loses the colored wing
phenotype (Tsubaki & Okuyama, 2016). Phenotypes can evolve so drasti-
cally (Fitzpatrick, 2012) or be distributed differently (Rolshausen et al.,
2009) as to generate reproductive isolation between conspecifics and thus,
could eventually generate new species (evolutionary divergence). This pro-
cess reduces genetic variability at the genetic level but increases variability at
the species level (see below).

Under different environmental conditions, organisms with similar geno-
types might produce different phenotypes, i.e., they might have phenotypic
plasticity. For instance, honeybee larvae develop into workers or queens ac-
cording to the food received (Evans & Wheeler, 2000). The butterfly Ara-
schnia levana is a well-known example of seasonal polymorphism (Fric &
Konvi�cka, 2002), in which spring and summer generations are so different
that were initially described as different species. In aphids, environmental
cues condition the expression of different phenotypes (parthenogenesis in
spring/summer, sexual reproduction in fall/winter), but also affect the
phenotypic expression of the clonal offspring of the same mother (Dom-
brovsky et al., 2009). Individuals of the same population are genetically
diverse (except in clonal populations), and heterozygosis determines intrain-
dividual variability. Genetic expression can be delayed in time. For instance,
the genes that control the development of mandibular muscles and visual re-
ceptors are less expressed in the early stage of worker ants in most species
(Wilson, 1971), a fact that determines the division of labor in function of
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age (polyethism), i.e., younger workers developing tasks inside the nest;
older workers developing tasks outside the nest. Metamorphosis represents
another example of the delayed expression of genes that conditions the
ecological role of the species because larvae and nymphs possess different
nutritional needs than adults and frequently inhabit different environments.
Environmental factors can alter gene expression without modifying the ge-
netic information (epigenetics; see Berger et al., 2009), and some of these
modifications can be transmitted to the next generation (Anastasiadi et al.,
2021). For instance, high rearing temperature, physical stress, injury, and
incomplete nutrition trigger clones of the ant Platythyrea punctata to become
subordinate foragers rather than dominant breeders, due to changes in gene
regulation (Bernadou et al., 2018).

Behavioral diversity
In contrast to functional diversity, which measures the influence of species
traits in the ecosystem (Tilman, 2001), behavioral diversity focuses on the
variability of responses and strategies at the individual level, at the popula-
tion, and at the species level, including species of the same functional group
(Cordero-Rivera, 2017). For instance, the seeds of Stemona tuberosa are
dispersed by insects, but each insect species manifests a different behavior:
native and introduced wasps tear off the seeds from the plant, removing
the seed and elaiosome (first dispersers), while ants collect and transport
the residuals left after wasps (secondary dispersers) (Chen et al., 2017). In
addition, similar behaviors can have different functions in the ecosystem.
For instance, earthworms, crickets, and ants (among others) dig galleries
contributing to the soil oxygenation, but their objectives are completely
different (food, shelter, nesting). There is increasing evidence that environ-
mental impacts affect the species of a community in different ways depend-
ing on their behavioral repertories (de Resende et al., 2021), and
ethodiversity can therefore be used as an indicator of anthropogenic impact
(Guillermo-Ferreira et al., 2021). The relevance of behavioral variability is a
topic of emerging interest in conservation (Caro & Sherman, 2012), but it is
still far from being considered at all levels at which it is expressed: at intra-
individual (e.g., plasticity), population (e.g., personality), species (e.g.,
behavioral patterns and strategies), and ecosystem level (e.g., interspecific
behavioral patterns) (Cordero-Rivera, 2017).

Behavioral modification and behavioral phenotypes are frequently the
first change observed in individuals and populations as an evolutionary
mechanism allowing adaptation. This is possible due to the intrinsic
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behavioral repertory contained within individuals and populations (from
cognition to personalities) and the low energetic costs and the speed of
behavioral changes in comparison with morphological changes. Behavioral
phenotypes can show similar or different morphology. An example of
different behavioral phenotypes but similar morphological phenotypes are
the ants of the species Aphaenogaster senilis, in which all workers have similar
morphology but only the ones with a particular personality use tools to
transport their food to the colony (Ma�ak et al., 2020). An example of
different behavioral and morphological phenotypes are the different color
morphs of females of the damselfly genus Ischnura, in which each morph
uses different strategies to avoid male harassment: females that have different
body color than males frequently hide in their perch when a male is
approaching, while the female phenotype that shows male-like color
frequently reacts aggressively, confronting face-to-face the males
(S�anchez-Guillén et al., 2017).

Decades ago, behavioral variability was labeled at the species level, in
which individuals’ behavior was interpreted as the product of the species in-
stinct (see Galef, 2003) and its variability was interpreted as noise (Dinge-
manse & Dochtermann, 2014). Although this interpretation is still
frequent in popular writings, recent research focused the attention on the
individual response to environmental problems. Even though individuals’
behavioral repertory is limited by the species morphology and skills, it has
been proven in a wide range of organisms that behavioral performance varies
among (personalities) and within individuals (behavioral syndromes, plas-
ticity, unpredictability, and repeatability; see Box 2.1) across time, situations,
and/or conditioned by previous experiences. All these behavioral dimen-
sions emerged by focusing on the behavioral variance instead of the mean
values and are frequently estimated via statistical modelization (e.g., linear
mixed models [LMM] and Bayesian approaches [Double Hierarchical Linear
Mixed Models]), see Hertel et al. (2020), or formulae (reviewed by Cleasby
et al., 2015).

Behavioral variability among populations can be a result of local adapta-
tions. As individuals adapt their behavior in concordance with environ-
mental pressures, local environmental differences can produce different
behavioral responses (see Brakes et al., 2021; but see Anderson & Weir,
2022). These behavioral differences can be inherited or transmitted via social
learning between generations, generating cultures, and, thus, increasing the
behavioral response of the same species through different contexts. For
instance, food preference of some bees and ants is established by trophallactic
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Box 2.1 Behavioral dimensions relevant to biodiversity
conservation
Personality: consistent interindividual behavioral differences across time or situ-
ations between individuals of a population (Dingemanse et al., 2010). Personality
measures how individuals’ behavioral patterns differ from their conspecifics. In
the graph below (Fig. 2.3), personality variation is represented as the variance be-
tween individuals’ intercepts, i.e., the value in which the regression line repre-
senting the behavioral values touches the y-axis (Dingemanse et al., 2010).
Some common personality traits used to compare individuals are, for instance,
activity (locomotion in a nonrisky and familiar environment), exploration (loco-
motion in a nonrisky and novel environment), aggressiveness (propensity to
attack), bold-shy axis (latency to act), neophobia (negative response to new ele-
ments), and sociability (propensity to remain in group) (Réale et al., 2007). Per-
sonality variation is important for adaptation, especially under fluctuating
conditions or different environments. For example, bold individuals may be at
higher risk of predation when foraging due to their higher exposure to predators

Figure 2.3 Graphical representation of a theoretical behavioral trait measured
across time for four individuals represented by different colors. Observed values
are represented by dots, modeled patterns by continuous lines, and the variance
of each observed value to the expected from the regression model by dashed lines.
Studies focusing on the mean values would not find differences between the behav-
ioral response of the individuals represented in orange and blue, which highlights
the relevance of studying behavioral variability. All individuals show distanced inter-
cepts, suggesting personality variability. Individuals represented in orange and blue
show different slopes according to the others (no-plasticity for the orange,
decreasing slope for the blue). Individuals represented in orange and yellow show
low predictability, while it is high for the others (comparing the length of the dashed
lines). Individuals showing no-overlapped behavioral patterns (yellow, gray) increase
repeatability values, while overlapped or closer patterns decrease repeatability.
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Box 2.1 Behavioral dimensions relevant to biodiversity
conservation (cont'd )
(e.g., number of visits, time spent exposed), but these individuals may obtain
more resources than shier individuals when they are at low risk of predation
(Brodin, 2009).

Behavioral syndromes: correlation of personality traits (Sih et al., 2004). At
the population level, behavioral syndromes allow to compare the relationship
between two or more personality traits among conspecifics. This correlation
may differ between phenotypes. For example, Myrmica ants patrollers show a
positive correlation between boldness and aggressiveness, while carers do not
(Chapman et al., 2011). Although multiple studies focus on this kind of behav-
ioral correlation, still little is known about the underlying physiological and ge-
netic basis.

Behavioral plasticity: behavioral modification over observations (Dinge-
manse et al., 2010). Individuals modify their behavioral patterns and strategies
according to previous experiences and stimuli perceived from their environ-
ment. For instance, insects modify foraging, reproduction, habitat choice,
dispersal, sociality, and interspecific interactions when facing human habitat
disturbance (reviewed in van Baaren & Candolin, 2018). Behavioral plasticity
often produces the most rapid phenotypic change in the adaptive process
and therefore often represents the first step on the evolutionary pathway. In a
graph, behavioral plasticity is represented by the slope of the regression lines
representing the behavioral value (Fig. 2.3). Plasticity can be compared within
(e.g., the effect of the experimental observations as fixed factor in LMM) or
among individuals (e.g., the effect of the experimental observations as random
slope when considering the individual identification as random intercept in
LMM) (Sanmartín-Villar et al., 2021, 2022; Sanmartín-Villar & Jeanson, 2022).
Note that behavioral plasticity is not the opposite to personality: individuals
with particular personalities maintain certain values of personality traits through
time and situations, but these values can fluctuate and still differ from those of
their conspecifics (see Fig. 2.3). For example, one individual can be more aggres-
sive than another and remain more aggressive even when its aggressiveness de-
creases in response to time or an environmental change because the
aggressiveness of the other individual was also reduced.

Behavioral predictability: defined as the degree of behavioral variation that
an individual shows according to the behavioral pattern expected when consid-
ering its behavior on repeated observations (Stamps et al., 2012). There are
different approaches to calculate it (Cleasby et al., 2015). Alterations in behav-
ioral predictability may show effects of environmental factors on the population
behavioral performance. For instance, male harassment modifies behavioral pre-
dictability in damselfly females and in their daughters (Sanmartín-Villar et al.,
2022).

(Continued)
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interactions with their conspecifics (on bees, reviewed in Leadbeater &
Chittka, 2007; on ants, reviewed in Wagner et al., 2022). Therefore, the
next generation of individuals would use similar resources as their sisters
did, which can be conditioned by the local availability of resources. It is
known that some individuals, like bumblebees, learn from others how to
innovate (Alem et al., 2016), i.e., how to adapt their behavior to solve
new problems, which may depend on the diversity of the environment.
The variability among cultures of different populations is well studied in ver-
tebrates (Filatova et al., 2015; Freeberg, 2000; Hensel et al., 2022), but this
topic is still neglected in insects.

Within populations (i.e., among individuals), behavioral variability is
frequently the consequence of environmental unpredictability and/or alter-
native reproductive strategies. This highlights the variability present in the
specific behavioral repertory and the possibility of a pair of progenitors to
produce offspring with different behavior. In a metaphoric view, behavioral
variability within populations could be interpreted as the evolutionary ware-
house of a population, the resources contained by a group of individuals that
allow adaptation to changing pressures. Individuals may be born with a pro-
pensity to express certain behaviors, which can be carried until their adult-
hood. For instance, Pieris rapae butterflies prefer to oviposit on the host plant
in which they were raised as caterpillars (Cahenzli et al., 2015). Adult ants of
the species Camponotus rufipes prefer the thermal range experienced in the
early stages of their lives (Weidenm€uller et al., 2009). However, behavioral
variability among individuals increases as a result of their experiences and

Box 2.1 Behavioral dimensions relevant to biodiversity
conservation (cont'd )

Behavioral repeatability: variability explained among individuals considering
the variability explained within individuals (Dingemanse et al., 2002; Nakagawa
& Schielzeth, 2010; Fig. 2.3). Repeatable behaviors are those that show higher
variance between individuals than within individuals (Bell et al., 2009). It allows
understanding the uniqueness of the individual behavioral patterns in a popula-
tion context. Repeatability values depend on the place and time of the measure-
ments made, being higher whenmeasured in the field than in the laboratory and
when measured at close rather than distant observation intervals, and they also
depend on the behavior, number of observations, taxon, sex, or age (Bell et al.,
2009). It is generally calculated using the Intraclass Correlation Coefficient.
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different ways in which individuals perceive, memorize and respond to the
environment (Niemel€a et al., 2013).

The conservation of ethodiversity is similarly complex as the conserva-
tion of genetic variability when the expression of genes involved is cryptic,
i.e., when genetic variation is not morphologically observable. Therefore,
conservation programs focused on the maintenance of between/within
population behavioral variability require the effort of previous medium/
long-term studies trying to identify how individuals behave and how this
behavior differs among them. Neglecting behavioral variability could have
similar consequences as neglecting the within population/species genetic
variability: the population/species could lose a relevant adaptive trait if the
complete range of behaviors is not considered, which could have more dra-
matic consequences especially considering the environmental changes ex-
pected in the near future. To cope with that, natural behavior
management programs are emerging, which consist in considering the
behavioral repertory and variability of the species temporally maintained
in captivity (Rabin, 2003). If the task to maintain behavioral variability is
already difficult for vertebrates (see Brakes et al., 2021), the conservation
of behavioral variability in insects is still in its infancy.

Species diversity
Exploring species diversity was the typical approach in ecological studies un-
til the end of the 20th century (Cordero-Rivera, 2017). The main method
used to delimitate species was the comparison of morphological traits (tax-
onomy). Using the biological species concept, we assume that individuals
belong to the same species when they can produce fertile offspring. Repro-
ductive isolation is therefore the basis of species identity, and as a conse-
quence, taxonomical analyses frequently focus on genital traits.

Species diversity was interpreted by Darwin (Darwin, 1859) as the conse-
quence of evolutionary mechanisms and is still, today, the most frequent
method for measuring the state of conservation of ecosystems. Species diver-
sity is frequently measured by Simpson’s (Simpson, 1949) and Shannon’s
(Shannon, 1948) indexes and can be compared among ecosystems by the
Sorensen coefficient (Sorensen, 1948). An important concept in conserva-
tion programs is the abundance of individuals. For example, an ecosystem
rich in species could be fragile due to the low abundance of individuals
composing each species. This especially matters when the distribution of a
species is geographically limited (endemism). Species detection could be
difficult when speaking of insects. It is estimated that thousands of species
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remain cryptic for science (Stork, 2018) due to their small size and the
complexity of the habitats they inhabit. The future of insect conservation
could rely on the emerging methods to detect diversity such as the detection
of environmental DNA (Clare et al., 2022), or metabarcoding, which allow
the identification of the species variability from a general sample collected in
a particular environment.

Species are born and die, bringing dynamism to the species concept. The
variability within a species can produce different adaptations followed by
reproductive isolation and, thus, the radiation of one species into several
different ones. Species extinction is a common process of evolution that
purges species not adapted to the new environmental changes and occurs
continuously. May, Lawton, and Stork (1995) estimated that 90e96% of
all species extinctions occurred outside the mass extinction episodes. How-
ever, five mass extinctions are now known to have occurred since the origin
of life on Earth, most commonly due to environmental catastrophes to
which species were unable to adapt. In each of these processes, species diver-
sity suffered a drastic decrease, perhaps losing ecosystem homeostasis, but
also conferring the opportunity to the resilient species to spread, radiate,
and occupy the niches previously used by the extinct species, until reaching
again similar (or higher) diversity which existed before the event that trig-
gered the massive extinction.

Ecosystem diversity
Environments differ due to the heterogeneous effects of abiotic factors such
as temperature, humidity, altitude, wind, soil characteristics, etc., but also due
to the interaction among the species that inhabit them. The ecosystem
concept is one of the milestones of Ecology, although it is very difficult
to define precisely (O’Neill, 2001), because it is an integrative concept
(Ford, 2000). Each ecosystem is characterized by a community of species
whose behavior, biological cycles, and morphology are conditioned by their
adaptation to the abiotic (biotope) and biotic (biocoenosis) factors. Although
all factors composing an environment are dynamic, i.e., they are continu-
ously fluctuating and evolving, the interactions of most of them produce a
status of temporal homeostasis, a balance between factors allowing the prev-
alence of particular groups of species.

As discussed above, species adapt to their environments, but this process
is far from being passive because the species adaptation may also involve the
modification of the environment (i.e., niche construction; Laland et al.,
2015). Although all interactions between and within the biotic and abiotic
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factors condition the environment (because environment is the sum of all of
them), there are several examples that are more visual to exemplify the effect
of the species on the environmental change. One of the most frequently
recurring examples is related to the evolution of algae and plants, which
have modified the planet’s atmosphere increasing the oxygen levels. In
the case of insects, their interactions with plants (e.g., entomochory, the
dispersion of seeds; entomogamy, the dispersion of the pollen) alter the envi-
ronment by modifying the presence and distribution of plants. The modifi-
cations of the soil performed by termites and ants when building their
“cathedrals” (Fig. 2.2D), the enormous constructions emerging from the
ground containing their colonies, galleries, and the temperature control sys-
tems are notorious due to the visual and regulating effect that they produce
on the environment (Ashton et al., 2019).

The conservation of ecosystems needs the maintenance of their parts and
interactions, because losing some elements may compromise the stability of
the system (i.e., the rivet hypothesis; Ehrlich & Ehrlich, 1981). Although
ecosystems can tolerate the loss of a small part of their components (for
example, a species with few interactions with the others in the food web
or with other species performing similar ecological function), this loss can
produce a chain reaction resulting in losing the environmental homeostasis
(for example, the extinction of a species on which several others rely, as pri-
mary producers or pollinators). Species redundancy is therefore important
for conservation (Naeem, 1998).

Insect biodiversity and ecosystem services

The variability of insect morphology and behavior determines
different ecological roles and their interactions with other organisms, which
can be categorized according to the four classes of ecosystem services coined
by theMillennium Ecosystem Assessment (MAE, 2005; Fig. 2.1). The loss of
genetic, behavioral, or species diversity may impact some of these services. It
has been estimated that the ecological function of insects and the ecosystem
services they provide amounts to $57 billion/year (Losey & Vaughan, 2006).
However, our knowledge of the role of insects in ecosystem services is rela-
tively scarce and biased (Ewers et al., 2015; Noriega et al., 2018).

Supporting services
Supporting services are those needed for the provisioning of the other ser-
vices and include soil formation, photosynthesis, primary production,
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nutrient, and water cycling (MAE, 2005); reviewed in Noriega et al. (2018).
Insects are not involved in photosynthesis or primary production but are
relevant for the other services.

Several groups of insects are among the main “ecosystems engineers” of
soils. Insects constitute the main animal group involved in the breakdown
and recycling of organic matter (Fig. 2.1), both in terrestrial (Ulyshen
et al., 2014) and aquatic ecosystems (Macadam & Stockan, 2015). In aquatic
ecosystems, almost all detritivores are larvae of winged insects (Ephemerop-
tera, Plecoptera, Trichoptera), which complete their lifecycle in terrestrial
ecosystems, thereby exporting materials and energy (Raitif et al., 2019).
Fig. 2.4A shows an example of a supporting service when aquatic insect

Figure 2.4 Insects constitute a fundamental pillar for ecosystem services. (A) Aquatic
insect larvae (Heptageniidae, Ephemeroptera; in the photo) filter the water when
feeding (McCafferty & Bae, 1992), which constitute a supporting service. (B) Insects
are prey of other insects, which constitute a provisioning service. In the picture, a spe-
cies belonging to the family Ichneumonidae is transporting a caterpillar to its nest.
Then, the parasitoid will insert its eggs inside the larva, the nutritive resource of the
future offspring. (C) Syrphid larvae predating on aphids. Some species as syrphids
develop different functions to the environment: when larvae, they are biocontrol
agents against aphids and psyllids (Homoptera); when adults, they pollinate plants;
both regulation services. (D) The shape and colors of many species are valuable for their
aesthetical interest, which generates business as insect farming. In the picture, a butter-
fly emerged from selected pupae in a butterfly farm (Mariposario del Drago, Spain).
Photos: A, D: Adolfo Cordero-Rivera. B, C: Iago Sanmartín-Villar.
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larvae (Heptageniidae, Ephemeroptera) filter the water when feeding
(McCafferty & Bae, 1992). Their activity contributes to the purification
of wastewater, a process that is highly dependent on some groups like Chi-
ronomids, whose activity in the interface sediment water is crucial (Mac-
adam & Stockan, 2015).

Provisioning services
All the products humans obtain from the ecosystems constitute provisioning
services, including food, fiber, fuel, freshwater, genetic resources, com-
pounds with medical interest, etc. Insects are obviously very relevant in
most of them.

Insects constitute the basis of food webs as primary or secondary con-
sumers (in all environments except the sea), i.e., they compose the diet of
a vast number of secondary and tertiary consumers but are also the main
hosts for many parasitoids (Fig. 2.4B). Insects are part of the human diet
in several cultures of tropical countries. Over 1500 insect species have
been registered as part of human diet in 113 countries, and some of them
are currently proposed in the western world as an alternative protein source
for humans, livestock, fish, and pets (van Huis & Oonincx, 2017; Lokesh-
wari & Shantibala, 2010).

Insects’ diversity also translates into a variety of products they secrete/pro-
duce (Fig. 2.1). Honey attracts many insects and vertebrates due to its high
content of sugars. The bird Indicator indicator announces the location of bee-
hives to honey badgers (Mellivora capensis) and humans to obtain a reward
of honey from their mutualistic partners (Isack & Reyer, 1989). Today we
have evidence in paintings of the human use of honey for more than 6000
years (Ratcliffe et al., 2011; Tsubaki & Okuyama, 2016). Humans also use
beeswax, propolis, bee pollen, royal jelly, and venom from bees for nutritional
and pharmaceutical purposes (Zhang et al., 2008). Honeydew, an excretion
produced by aphids and psyllids (Homoptera), constitutes another resource
exploited by many other insects. Indeed, the interaction between those ho-
mopterans and ants constitutes the most ancient farming culture, in which
ants obtain reward in the form of the excretion in compensation for the pro-
tection of predators and for resituating the homopterans to the most tender
parts of the plant (Way, 1963). Other insect secretions or the galls that they
produce on trees are also used by humans, some of them for thousands of
years, in different industries (textile, ink, cosmetics, leather, pharmacology,
etc.) (Lokeshwari & Shantibala, 2010; Zhang et al., 2008).

Almost 350 insect species were historically used in traditional Chinese and
Brazilianmedicine to producemore than 1700 remedies and are still being used
for medical and biotechnological purposes (reviewed in Ratcliffe et al., 2011).
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Regulation services
Regulation services are the benefits obtained from the regulation of ecosys-
tems processes, including air, climate, and water, but also the regulation of
soil erosion, pest control, and pollination (MAE, 2005) among many others
(see Noriega et al., 2018).

Arguably, the interaction between flowering plants and insects (Fig. 2.1)
is one of the most economically relevant regulating services provided by in-
sects. Pollination of flowers is needed for fruit production of most plants,
including important sources for humans. But the function of insects does
not end with the production of fruits, as they are also very relevant agents
of seed dispersal (Li Vigni & Melati, 1999).

Although most devastating pests are insects, they also represent a diverse
array of natural enemies, which are the main agents used in biological con-
trol. When the abundances of insect pests and their predators are mis-
matched, other predators or parasitoid insects may be released to reduce
pest density. This kind of control frequently replaces the use of pesticides,
but in most cases, it involves the introduction of alien species (classical bio-
logical control), and the risk of unwanted ecological effects on other species.
As an example, the parasitoid wasp Anaphes nitens, native from Australia, has
been introduced into many countries to control the curculionid Gonipterus
sp., another Australian insect that is considered a pest of Eucalyptus planta-
tions in areas where the tree was introduced (Santolamazza-Carbone
et al., 2019).

Cultural services
Cultural services are nonmaterial benefits that humans obtain from biodiver-
sity, including a wide array of spiritual and religious elements, but also
educational, scientific, aesthetic, and recreative benefits (MAE, 2005)
(Fig. 2.1).

Several insects have been used historically by humans in their cultural ex-
pressions (e.g., dung beetles represented divine personages to the ancient
Egyptians). Insects attract human interest not only for the beauty of their
colors and movements (e.g., they are represented in paints, sculptures, liter-
ature, textile, etc.) but also for their morphological differences compared to
vertebrates, being represented by the “monstrosity” of their oral appendages,
long, tight and multiple legs, compound eyes, and large and separate sensilla,
which certainly have inspired multiple horror films. Insects are part of the
cognitive development of children, which, apart from having toys
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mimicking oversized insects, spend hours observing their movements and
trying to capture them, a behavior also observed in other animals. For a re-
view of the relevance of insects in human culture, see Morris (2004).

Butterflies are without doubt the most admired and required insects for
ornamental purposes. In fact, butterfly farms are common around the world
(Fig. 2.4D), and some people collect insects to satisfy the collectors’ wishes
(Lokeshwari & Shantibala, 2010). Coleopteran wings and elytra are used for
aesthetics in jewelry, embroidery, pottery, and basket makings (Lokeshwari
& Shantibala, 2010). Crickets of the species Velarifictorus micado were used in
China since the Tang Dynasty (years 618e907) for their song and fighting
abilities, a business that still moves half billion yuan every year (Zhang et al.,
2008).

Insect diversity is also used as a tool in forensic investigation. The devel-
opment or the succession of necrophagous insects on corps allows to esti-
mate the time and the environment (terrestrial, aquatic) in which death
occurred, while by using entomo-toxicology knowledge, it is possible to
assess if the death was caused by poisoning (see Siva Prasad & Aneesh, 2022).

In ecological evaluations, insects are also used to assess the quality of the
water as bioindicators (Tachet et al., 2010). The presence of insects as may-
flies (Ephemeroptera; Fig. 2.4A), stoneflies (Plecoptera), and caddisflies (Tri-
choptera) larvae denote a high-quality status of freshwater ecosystems
because of the specific requirements for their survival and the low tolerance
to pollutants, while the presence of dipteran larvae is frequently less informa-
tive because they can survive in polluted environments (Brasil et al., 2020).

In the last decades, a variety of insect shapes, functions, movements, and
compounds have inspired various fields of biotechnology (biomimetics; see
Lurie-Luke, 2014), developing new techniques, materials, and robotics
(Gorb & Vilcinskas, 2011).

Insect conservation: are we interested?

As we discussed above, insect biodiversity constitutes a key factor in
the homeostasis of our world. However, the interpretation of the value of
insects often differs between the scientific/naturalist and the popular view.
Insects are the target of management plans when they produce economic
costs by becoming pests or when they affect emblematic species. However,
their conservation is of low priority (Chowdhury et al., 2023; Dunn, 2005).
This may be due to the difficulty of identifying insect species, characterizing
their conservation status, and eliminating their environmental threats, but
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probably also due to our opinion about their relevance and the biased studies
mainly focused on certain Holarctic subgroups (see Mili�ci�c et al., 2021; Tit-
ley et al., 2017). Humans tend to empathize more with vertebrates (espe-
cially mammals and birds), so it is easier to obtain funding for campaigns
focused on their conservation (see Mammola et al., 2020). The WWF high-
lighted this phenomenon with an iconic billboard in which a blue fish tuna
was masked with the face of a panda bear while it advertised “Would you
care more if I was a panda?” In the International Union for Conservation
of Nature’s website (IUCN, 2023; checked on February 2023), the main
summary of the percentage of endangered animal groups neglects insects
(see Chapter 3). This is in part due to the lack of evaluations for most insect
groups, but also might be dependent of how we consider the rights and the
ability to feel pain of different animals, which is reflected in how scientific
experimentation considers ethical rules when testing vertebrates and cepha-
lopods, but not insects. People may show repulsion against insects or fear for
their stings and bites (although most insects cannot harm humans or if they
can, they do not attack for no reason), or even develop phobias, considering
insects as intruders of their homes, and react by smashing them without
ecological or ethical considerations.

Another indicator of the low interest in insects is the lack of common
names referring to insect species and the fact that insects are underrepre-
sented in human history and art. In most cultures, there is a common
name for almost all mammals and birds, but insects’ species frequently lack
common names (e.g., using “ants” or “grasshoppers” for all kinds of Formica
or Orthoptera species) or directly remain unknown for the general culture
(e.g., there are no common names for species of the orders Ephemeroptera,
Trichoptera, or Plecoptera). Animistic religions, legends, and fables used to
evoke vertebrates in their learnings, but insects were frequently not consid-
ered. Exceptions to that are, among others, the spirits inhabiting termite ca-
thedrals (Fig. 2.2D) in some African traditions, the representation of dung
beetles in Egyptian hieroglyphics and sculptures, or fables as The Ant and
the Grasshopper (attributed to Aesop) and the interaction of King Solomon
with ants and bees (the Bible, Old Testament).

In the last decades, humans have been increasingly acknowledging that
insects have ecological value. Conservation programs focusing on insects
are increasingly being implemented and supported by the public (Mili�ci�c
et al., 2021). For example, “insect hotels” (woody structures to provide nest-
ing habitats) are sold in large supermarkets, an indication that people are
interested in protecting insects. Part of the urban gardens of some cities or
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some agricultural areas (agri-environment schemes; e.g. Samways et al.,
2020) are not so regularly mowed or altered to allow flowering of plants
used by pollinators (see also Baldock et al., 2019), known as the “No
mow May” initiative. The elder population is generally concerned about
the reduction in insect abundance they perceive when compared to their
childhood. However, Saunders et al. (2020) reject this “apocalyptic” view
of the current insect conservation, which they attribute to the biased consid-
eration of certain studies and their subsequent highlighting by the media (but
see Chapter 3) and call for action to be taken instead of mourning the loss of
insects. Current researchers’ advice focus on the development and improve-
ment of conservation actions (especially for those threated insects); the in-
crease of landscape heterogeny in agriculture; the prevention and control
of alien introductions (see below and Chapters 5e9); the reduction of light,
water, and noise pollution; the replacement of pesticides by ecological treat-
ments; the reduction of harmful products for the environment; and the
improvement of education programs for ecological awareness (Cardoso
et al., 2020; Harvey et al., 2020). These researchers also encourage the
development studies focused on unraveling the anthropogenic stressors
causing insect decline considering (i) the existent data stored in private,
museum, and academic collections and (ii) standardized data from global
monitoring programs. In any case, today’s scientists interested on insect con-
servation point toward the study of biodiversity rather than the study of in-
dividual species, especially in the case of endemic insects (Medeiros et al.,
2013) and those living in protected areas (Chowdhury et al., 2023).

Biological invasions and insect conservation

There are many examples of insects that have successfully invaded
foreign ecosystems all around the world, causing high economic losses (agri-
cultural and forest pests) and health risks to humans (e.g., the invasion of
Vespa velutina in Europe and North America) or to domestic or wild animals.
For instance, the invasion of the Gal�apagos Islands by the fly Philornis downsi
is a major risk for some endemic birds (McNew & Clayton, 2018). In these
cases, actions to control alien insects are commonly implemented. However,
the complexity of this type of actions increases because they have to deal
with the synergy of the introduction of species with environmental pollu-
tion and climate and habitat change (Wilson & Fox, 2021).

Rather than on economically important resources, sometimes the main
effect of insects as alien invasive species is on native insects and its ecological
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functions (see Chapter 6). A clear example is the Argentine ant (Linepithema
humile), whose expansion is causing the displacement on ant communities,
affecting their myrmecochory role (L. humile ants fail to replace the seed
dispersion developed by native ants) (G�omez & Oliveras, 2003). Other
exotic insect predators, notably wasps, are affecting local insect populations
and threatening whole ecosystems. For instance, the spread of Polistes versi-
color in the Gal�apagos National Park has a high impact on lepidopteran
larvae, 75% of which are indigenous to the islands (Parent et al., 2020).
Introduced insects displace native species mainly due to their aggressive
behavior and/or the competition for resources (Russo et al., 2021), but
they also cause the decline of native insects through the transmission of path-
ogens (Vilcinskas, 2019; see also Chapter 9). For instance, two of the most
invasive ants, L. humile and Solenopsis invicta, carry 31 and 41 viruses, respec-
tively, some of them transmissible to other insects as honeybees (Baty et al.,
2020). The likelihood of pathogen transmission increases when introduced
insects are social, as social insects are numerous and frequently have a higher
growth rate, higher activity between seasons and tend to be more generalist
than solitary insects, which increases the likelihood of interacting with native
species and/or with their resources (Russo et al., 2021).

Control actions are rarely implemented when introduced insects affect
native insects, or when they are, many fail. Prior et al. (2018) reviewed
151 studies that removed invasive species and assessed the recovery of the
invaded areas. Of the 116 studies in terrestrial systems, 59 removed verte-
brates, 48 removed alien plant invaders, but only 9 were concerned with
the removal of alien invasive insects (7 ants, 1 wasp, and 1 phytophagous in-
sect). Animal populations recovered in 74% of cases after the removal of
alien invaders (Prior et al., 2018), but, to our knowledge, no specific assess-
ment of invaded insect communities’ recovery has been done, a frequent
pattern in reviews considering the effect of invasive species (also see Due~nas
et al., 2021). Insect conservation and the control of invasive species is timidly
growing through current initiatives and studies. For example, it was proved
that agroforest plantationsd“multi-storied trees and crops mimicking the
complex structure of natural forest”dpreserve native insects and impede
the distribution of invasive insects more than monocultures (Lee et al.,
2020). Metabarcoding is suggested as a potential tool to help preventing in-
sects’ introductions through massive monitoring (Piper et al., 2019). Math-
ematical programming models are being applied to prevent and control
invasions (B€uy€uktahtakın &Haight, 2018). There is still a long way to accept
insects and the relevance of their diversity in our societies (Cordero-Rivera
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et al., 2021). We should develop a different approach toward insects with
the support of the scientific and technological progress, both based in the
inherent curiosity that motivates us to unravel the ecological processes
and mechanisms that drive our world.
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CHAPTER THREE

The insect decline syndrome
Wolfgang Rabitsch and Klaus Peter Zulka
Environment Agency Austria, Vienna, Austria

Introduction

Insects are by far the most species-rich group of organisms on this
planet, although we do not know exactly how many species there are.
Currently, more than one million species are described with many more
awaiting discovery and formal description. Estimates of this yet unknown
species diversity vary, but numbers between 5 and 10 million are most often
cited (Grimaldi & Engel, 2005; Stork, 2018). Insects comprise more than
60% of all animal species and approximately 50% of the total species
biodiversity.

Hexapoda (including insects and the three small groups of Collembola,
Protura, and Diplura) are probably descendants of marine crustaceans and
have conquered terrestrial environments some 480 mya in the Ordovician,
with the presumably first fossil record dated back to the Early Devonian,
some 400 mya. They radiated during the Triassic and Cretaceous periods
alongside the radiation of vascular plants and have evolved to live in Antarc-
tic and tropical conditions and in all terrestrial and freshwater habitats. The
majority of described species, almost 80%, belong to the holometabolous in-
sects with a complete metamorphosis, including 350,000 species of beetles
(Coleoptera).

Insects and humans share a long-standing history and manifold and
diverse relations. Insects can transmit pathogens that kill, they feed on crops
and can damage infrastructure, but they also provide food, dye, silk, and
honey; they offer essential ecosystem functions in food webs (both as pred-
ators and prey), species interactions (pollination), and nutrient cycling
(decomposing) (see Chapters 2 and 9). These latter functions also translate
into ecosystem services (or nature’s contributions to people) with direct ben-
efits to human well-being (Dangles & Casas, 2019; Díaz et al., 2018). With
the onset of the Anthropocene and human domination on Earth (see Chap-
ter 1), insects have been facing significant challenges (Rockström et al.,
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2009; Steffen, Richardson, et al., 2015), as has biodiversity in general. The
IPBES report (2019) concludes that “human actions threaten more species with
global extinction now than ever before,” suggesting that “around 1 million species
already face extinction, many within decades” and that “the rate of global change
in nature during the past 50 years is unprecedented in human history.” There is
ample agreement in the scientific literature that current defaunation and
extinction rates exceed historical rates by orders of magnitude (Ceballos
et al., 2015; Dirzo et al., 2014). Barnosky et al. (2011) and others proclaimed
that the “Sixth Mass Extinction” has become reality and - contrary to pre-
vious mass extinctions in Earth’s history - can be associated with human ac-
tion. In the fossil record of previous mass extinctions, marine and vertebrate
diversity reductions were the most conspicuous effects. The current decline
in the abundance and biomass of insects worldwide might lead to the first
high-profile insect mass extinction in global history (Schachat & Labandeira,
2021).

A brief history of insect decline

The Oxford dictionary defines a syndrome (in medicine) as a set of
physical conditions that show you have a particular disease or medical prob-
lem. We here denominate the various observed conditions related to the
decline of insects as the “Insect Decline Syndrome” (IDS), an environmental
problem of potentially tremendous relevance for biodiversity, economies,
and human well-being.

The decline of biodiversity in general and of insects in particular is not an
entirely new story. Red Lists of endangered mammals and birds were first
published by the International Union for the Conservation of Nature in
1964. The first global insect assessments were published in the Invertebrate
Red Data Book (Wells et al., 1983), including 71 species from 14 orders,
with more species and groups covered in the following decades, also at sub-
national, national, regional, and continental scales. Although insects rank
second in absolute numbers of assessed species, the proportion is only around
and probably below 1% of the known insect species diversity (Table 3.1),
with a conspicuous bias toward one iconic group: 50% of the assessed species
belong to Odonata (dragonflies and damselflies), representing 95% of all
described species within this group (IUCN, 2022).

In the late 1980s and early 1990s, several studies already pointed to
decreasing numbers of insect species at large scales, for example, ground bee-
tles in parts of Europe (Desender & Turin, 1989) or butterflies in the
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Netherlands (van Swaay, 1990). Hawksworth (2003) and Thomas et al.
(2004) demonstrated similar patterns for Great Britain. Subsequently,
more and more publications appeared targeting different countries and in-
sect groups (Biesmeijer et al., 2006; Wenzel et al., 2006). A common theme
of these studies was the decline of habitat specialists and the impacts of
habitat fragmentation, a particularly popular conservation topic at this
time, championed by Ilkka Hanski and others (Hanski, 1999; Hanski & Gil-
pin, 1997). The first indications for the possibility of a more widespread phe-
nomenon were expressed. Conrad et al. (2006), for example, in an analysis
of light trap data from the famous Rothamsted Insect Survey, found an
abundance decrease in two thirds of moth species between 1968 and 2002
and already used the term “insect biodiversity crisis” in the paper title.
Brooks et al. (2012) found decreasing individual numbers in three quarters
of the ground beetle species in Great Britain between 1994 and 2008 and
called these patterns “evidence for a widespread loss in insect biodiversity”; both
studies conclude that insect species loss and abundance reduction appear
to be more extensive and occur at larger scales than previously assumed.
While insect decline previously had targeted mainly habitat specialists (Habel
et al., 2016, 2022), now also widespread and common species were increas-
ingly affected. Dirzo et al. (2014) reviewed trend data of more than 1000 in-
sect species in Great Britain between 1970 and 2009 and found abundance
reductions of 30%e60%, depending on the insect group. Fox et al. (2014)
found a significant decline in geographically widespread moth species in

Table 3.1 Percentage of assessed animal species in the global IUCN Red List of
Threatened Species.
Taxon Known species (approx.) Red List assessed species %

Mammalia 6400 5968 93%
Amphibia 8380 7296 87%
Reptilia 11,700 10,148 87%
Aves 15,000 11,162 74%
“Pisces” 32,500 22,581 69%
Mollusca 130,000 9019 7%
Arthropoda
(non-Insecta)

180,000 3896 2%

Insecta 1,000,000 12,100 1%
All other groups 53,300 1499 3%
Total ca. 1,437,280 83,669 6%

From IUCN (2022). The IUCN Red List of Threatened Species. https://www.iucnredlist.org. (Accessed
26 February 2022).
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Great Britain between 1970 and 2010 and suggested that land use change
(habitat loss, nitrogen deposition) and climate change were major drivers
of the biodiversity depauperation, acting independently and in combination.

It was the landmark study of Hallmann et al. (2017), however, that kicked
off a stream of follow-up analyses, meta-analyses, reviews, and newspaper
stories. Hallmann et al. (2017) reported a decrease of 76% in the biomass of
flying insects over 27 years in 63 protected areas in North Rhine-
Westphalia (Germany). The study demonstrated a significant decline across
a wide range of flying insect groups and habitats within a large area. The focus
on biomass instead of species abundances or individual numbers illustrated the
risk of an ecological function decline for pollination (Potts et al., 2010, 2016),
with similar declines for songbirds (Hallmann et al., 2014) expected to follow
suit. From this study, it became clear that insect biomass reductions are a long-
term process playing out at the landscape and regional scales, affecting many
ecosystems and not stopping at the borders of nature reserves. Albeit the pub-
lication was criticized methodologically and may have some inherent weak-
nesses, its major conclusions withstood the scrutiny. Hallmann et al. (2017)
stand as an advisory of substantial and momentous biodiversity loss.

The findings were confirmed and reinforced with data from Seibold
et al. (2019) from three German regions, obtained from 150 grassland and
140 woodland sites between 2008 and 2017. Within the 150 grassland sites,
which were sampled annually by sweep netting, Seibold et al. (2019)
observed a biomass reduction by 67%, a decline in individual numbers by
78%, and a decrease in species numbers (regional gamma diversity) by
34%. Studies in the Netherlands complemented the overall picture: Van
Strien et al. (2019) found decreasing numbers for 71 butterfly species in
the Netherlands between 1890 and 2017. Hallmann et al. (2020) found a
biomass decrease of approximately 60% and 42% for butterflies and ground
beetles, respectively, in two protected areas in the Netherlands.

Since the important role of nature reserves for the conservation of biodi-
versity has been repeatedly demonstrated (Thomas & Gillingham, 2015), it is
particularly remarkable that large insect declines have been found in studies
completely confined to protected areas. In the Hallmann et al. (2017) study,
the protection status varied considerably among sites; six sites were situated
in Water Protection Zones, but the majority were located in Natura 2000
sites. Even though protected areas are rarely designed to specifically support
insect conservation (Chowdhury et al., 2022), the demonstrated inadequacy
of European flagship conservation instruments to prevent insect losses is
particularly worrisome.
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To date, most studies documenting insect declines have been restricted
to Europe (Bell et al., 2020; Rada et al., 2019; Roth et al., 2020; Schuch
et al., 2012) and North America (Forister et al., 2016; Wepprich et al.,
2019). However, studies from other regions, either tropical (Theng et al.,
2020) or arctic (Gillespie et al., 2020), mirror the picture of an overall
decline. Lister and Garcia (2018) compared insect abundances in the
Luquillo rainforest in Puerto Rico between 1976/77 and 2011/13 and
found a four to eight times reduction of insect abundances using sweep
nets and a 60 times reduction of biomass in surface sticky traps, but Willig
et al. (2019) and Schowalter et al. (2021) pointed out that these relations
should be interpreted as a response to hurricane disturbance and not as ev-
idence of a long-term decline trend triggered by climate change.

The latter example illustrates some of the difficulties associated with the
establishment of long-term trend evidence on insects. “Before-after” mea-
surements, with researchers repeating previous studies using identical sam-
pling protocols, are hampered by large fluctuations in insect numbers
between years (e.g., Macgregor et al., 2021). Continuous ecological long-
term monitoring data, standardized sampling protocols, and strict methodol-
ogies followed over decades are necessary to recognize long-term patterns. A
continuous time series over the years with many, ideally annual, sampling
points is required to factor out the noise (natural fluctuations) between
different years from the signal (the long-term trend).

S�anchez-Bayo and Wyckhuys (2019) summarized 73 insect decline
studies and submitted the results to a meta-analysis. They found declines
in 41% of analyzed insect species and even higher rates in aquatic insects.
However, this review prompted a flurry of comments and rebuttals (Mupe-
pele et al., 2019; Simmons et al., 2019), mostly related to the arguably
improper use of search strings for the literature search (i.e., there are many
more studies on the topic available that have not been included in the anal-
ysis), overemphasis of some results (i.e., most data are from Europe and
North America, but the conclusions were extrapolated worldwide), and un-
due exaggeration of extinction probabilities from data unsuitable for their
derivation. In a similar meta-analysis, van Klink et al. (2020) included 166
long-term studies, mostly from North America, and found a 9% decline
per decade in the abundance of terrestrial insects but an 11% increase for
aquatic insects. In a similar attempt analyzing more than 5300 time-series
from United States Long Term Ecological Research sites, Crossley et al.
(2020) found increases and declines, but the overall net abundance was insig-
nificantly different from zero, regardless of whether highly disturbed or
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natural sites were investigated. Local insect increases in some groups, in some
regions, and under particular circumstances blur the overall negative picture
of an “insect apocalypse narrative” in the media coverage, painted after the
publications of Hallmann et al. (2017), Lister and Garcia (2018), and
S�anchez-Bayo and Wyckhuys (2019). Evidently, the reality is much more
complex, but even if available evidence may have been unduly extrapolated
and if the IDS may have been inflated into a ubiquitous and general phe-
nomenon, the substantial number of well-documented regional declines is
worrying enough to stimulate immediate action (Cowie et al., 2022; Kawa-
hara et al., 2021; Samways et al., 2020).

Table 3.2 provides an overview of the studies mentioned in this chapter,
including further details (e.g., study type, methods, target organisms, and
observed trends).

The causes of insect decline

An explanation for large-scale, long-term insect declines should meet
certain criteria: (1) As IDS is a large-scale phenomenon, the tentative factor
must also act over large regions and spatial scales; (2) the importance of the
factor must have increased during the past decades, a timespan in which in-
sect declines have been shown; (3) ideally, the factor should show a stronger
relation to insects than to other taxa (e.g., an increase in insecticide use
would make it a better candidate for IDS explanation than an increase in
herbicide use). In the following, we focus on causes that are repeatedly
mentioned as possible or likely factors responsible for the observed insect de-
clines (Table 3.3) (compiled from Cardoso et al., 2020; Habel et al., 2019;
Potts et al., 2010; Wagner, 2020). Additional causes are sometimes
mentioned, for example, increased CO2 levels in the atmosphere causing
reduced nitrogen concentration in host plants with negative effects on her-
bivores (Decker et al., 2018; Welti et al., 2020), overexploitation of insects as
food and feed (e.g., in traditional medicine) or as pets (Cardoso et al., 2020),
road traffic (Martin et al., 2018) or electromagnetic fields (Balmori, 2021),
but such impacts have only been demonstrated experimentally or locally
so far, or evidence has been limited, and relevance has been unclear; thus,
we consider them less likely explanations for a global IDS.

Habitat loss, habitat degradation, and habitat fragmentation
The ultimate and definitive destruction of habitats is arguably the most
serious threat to biodiversity in general and to insects in particular (IPBES,
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Table 3.2 Overview of the studies mentioned in this chapter. If not stated otherwise, change percentages in the column “Trend” refer to the entire study
period. N ¼ individual numbers, S ¼ species richness numbers.

Study Study type Organisms Method Periods Geography Habitat type Trend
Target
measure Remarks

Bell et al.
(2020)

Continuous
time series

Aphids 112 light traps,
25 suction
traps

1969e2016 UK Many types Decline
(�7.6%; n.s.)

N High fluctuations

Bell et al.
(2020)

Continuous
time series

Moths 112 light traps,
25 suction
traps

1969e2016 UK Many types Decline
(�31%;
signif.)

N Decline in coastal
urban and
woodland
habitat, not in
agricultural,
parkland,
scrubland
habitats

Biesmeijer
et al.
(2006)

Periods
before and
after
reference
year

Bees Database
records,
10 � 10 km
cells

Pre-1980
versus
post-1980

UK All types Decline in 52%
of cells;
increase in
10% of cells

S

Biesmeijer
et al.
(2006)

Periods
before and
after
reference
year

Hoverflies Database
records,
10 � 10 km
cells

Pre-1980
versus
post-1980

UK All types Decline in 33%
of cells;
increase in
25% of cells

S

Biesmeijer
et al.
(2006)

Periods
before and
after
reference
year

Bees Database
records,
10 � 10 km
cells

Pre-1980
versus
post-1980

Netherlands All types Decline in 67%
of cells;
increase in
4% of cells

S

(Continued)



Table 3.2 Overview of the studies mentioned in this chapter. If not stated otherwise, change percentages in the column “Trend” refer to the entire study period.
N ¼ individual numbers, S ¼ species richness numbers.dcont'd

Study Study type Organisms Method Periods Geography Habitat type Trend
Target
measure Remarks

Biesmeijer
et al.
(2006)

Periods
before and
after
reference
year

Hoverflies Database
records,
10 � 10 km
cells

Pre-1980
versus
post-1980

Netherlands All types Decline in 17%
of cells;
increase in
34% of cells

S

Bowler
et al.
(2015)

Continuous
time series

Butterflies Amateur
observations

1980e2011 Germany:
Saxony

Many types Decrease
(signif.) in
0% of
species,
increase
(signif.) in
71% of
species

N

Bowler
et al.
(2015)

Continuous
time series

Springtails 9 soil cores per
site and
year,
Macfadyen
extraction

1986e2003 Germany:
Baden-
W€urttem
berg

Forest Decline (signif.)
in 7% of
species,
increase
(signif.) in
26% of
species

N

Bowler
et al.
(2015)

Continuous
time series

Carabid
beetles

5 pitfalls per
site

1998e2005 Germany:
Elbe

Grassland Decline (signif.)
in 38% of
species,
increase
(signif.) in
39% of
species

N



Brooks et al.
(2012)

Continuous
time series

Carabid
beetles

30 pitfall traps
per site, 11
sites

1994e2008 UK Several types Decline
(�52%/10
years in
montane
sites, �31%/
10 years in
western
pasture sites),
increase þ
48% (one
southern
downland
site)overall
negative
trend

N

Conrad
et al.
(2006)

Continuous
time series

Butterflies Light traps
(Rotham
sted Insect
Survey)

1968e2002 UK:
Southern
England

All types Decline of 31%
of total
individual
numbers
during
sampling
period

N No decline in
northern
England

Desender &
Turin
(1989)

Periods
before and
after
reference
year
(1959)

Carabid
beetles

Database
analysis

1870e1989 Netherlands,
Belgium
and
Luxem
bourg,
Denmark

All types Decline in 83
species; no
trend in 137
species,
increase in 61
species

Grid cells

(Continued)



Table 3.2 Overview of the studies mentioned in this chapter. If not stated otherwise, change percentages in the column “Trend” refer to the entire study period.
N ¼ individual numbers, S ¼ species richness numbers.dcont'd

Study Study type Organisms Method Periods Geography Habitat type Trend
Target
measure Remarks

Ewald et al.
(2015)

Continuous
time series

Insects D-Vac
(Dietrick
vacuum
suction trap)

1970e2011 UK:
Southern
England

Arable land Diverse, group-
specific
patterns

N

Forister
et al.
(2016)

Continuous
time series

Butterflies Transect
recording,
database
analysis

1972e2007 USA:
California,
Sierra
Nevada

Several
types,
elevational
gradient 0
e2775 m

Decline in 5
out of 10
sites, increase
in the highest
site of the
gradient

S

Forister
et al.
(2016)

Continuous
time series

Butterflies Transect
recording,
database
analysis

1972e2007 USA:
California,
Sierra
Nevada

Arable land,
settle
ments

Breakpoint
1997, species
richness
decline after
breakpoint

S Decline in
butterfly
species
correlated with
neonicotinoid
use after
accounting for
temperature
and land
conversion



Fox et al.
(2014)

Continuous
time series

Moths Database
analysis

1970e2010 UK All types Decline in
(significant)
260 species,
decline in
(tendency)
157 species,
increase in
(tendency)
96 species,
increase in
(significant)
160 species

Records (in
relation to
bench
mark
species)

Gillespie
et al.
(2020)

Continuous
time series

Muscids Pitfall traps 1996e2014 Greenland:
Zacken
berg

Wet fen,
mesic and
arid heath

Decline in 7
out of 14
species,
mainly genus
Spilogona.

N

Habel et al.
(2016)

Continuous
time series

Butterflies;
zygaenid
moths

Database
analysis

1840e2013,
some 10-
year
periods
excluded

Germany:
Regens
burg

Calcareous
grasslands

Decline
(�39%)

S Specialists were
replaced by
generalists

Habel et al.
(2022)

Continuous
time series

Butterflies;
zygaenid
moths

Database
analysis

1920e2019 Austria:
Province
Salzburg

All types In many
ecological
guilds,
breakpoints
and decline
afterward,
mostly
affecting
habitat
specialists

Records

(Continued)



Table 3.2 Overview of the studies mentioned in this chapter. If not stated otherwise, change percentages in the column “Trend” refer to the entire study period.
N ¼ individual numbers, S ¼ species richness numbers.dcont'd

Study Study type Organisms Method Periods Geography Habitat type Trend
Target
measure Remarks

Hallmann
et al.
(2017)

Continuous
time series

Flying insects Malaise traps 1989e2016 Germany Many types,
protected
areas

Decline
(�76%)

Biomass

Hallmann
et al.
(2020)

Continuous
time series

Carabid
beetles

46 locations, 3
pitfall traps
each

1986e2016 Netherlands:
Wijster

Heathland
(forest)

Decline (�4%
per year,
�6% after
1995)

N

Hallmann
et al.
(2020)

Continuous
time series

Macromoths Light traps 1997e2017 Netherlands:
De
Kaaistoep

Heathland,
pine
forest,
grassland

Decline (�4%
per year)

N

Hallmann
et al.
(2020)

Continuous
time series

Carabid
beetles

Light traps 1997e2017 Netherlands:
De
Kaaistoep

Heathland,
pine
forest,
grassland

Decline
(�6.8% per
year)

N

Hallmann
et al.
(2020)

Continuous
time series

Caddisflies Light traps 2006; 2009
e17

Netherlands:
De
Kaaistoep

Heathland,
pine
forest,
grassland

Decline
(�9.2% per
year)

N

Harris et al.
(2019)

Two
periods,
sampling
repetition

Beetles Window traps 1973e1977
versus
2015e17

USA: New
Hampshire

Forest Decline
(�83%)

N



Harris et al.
(2019)

Two
periods,
sampling
repetition

Beetles Window traps 1973e1977
versus
2015e17

USA: New
Hampshire

Forest Decline
(�42%)

S Capture rate
positively
associated with
snow cover

Hemberger
et al.
(2021)

Continuous
time series

Bumble bees Database
analysis

1870e2018 USA:
Midwest

Arable land Decline
(�20%, sharp
drop in the
1950s)

S Significant
relationships
between
bumble bee
occurrence and
agricultural
intensification

Herrera
(2019)

Continuous
time series

Flower-
visiting
insects

Pollinator
census by
plant species

1997e2017 Spain: Jaén
Province

Undisturbed
Quercus
and Pinus
forests

Coleoptera,
Hymeno
ptera:
Significant
increase
(patch,
flower)
Diptera:
Increase
(flower)
Lepidoptera:
No change

Patch and
flower
visitation
proba
bility

Undisturbed
habitats do not
show a decline

Lister and
Garcia
(2018)

Two
snapshots,
sampling
repetition

Forest
arthropods

Sweep-netting 1976e77
versus
2011e12

Puerto Rico Rainforest Decline
(between
�75% and
�87,5%)

Biomass “Analytical
approach and
treatment of
the data were
questionable”
(Schowalter
et al., 2021);
see also Willig
et al. (2019)

(Continued)



Table 3.2 Overview of the studies mentioned in this chapter. If not stated otherwise, change percentages in the column “Trend” refer to the entire study period.
N ¼ individual numbers, S ¼ species richness numbers.dcont'd

Study Study type Organisms Method Periods Geography Habitat type Trend
Target
measure Remarks

Lister and
Garcia
(2018)

Two
snapshots,
sampling
repetition

Forest
arthropods

Sticky-traps
(ground)

1976e77
versus
2011e12

Puerto Rico Rainforest Decline
(�97%; July)
decline
(�98%;
January)

Biomass “Analytical
approach and
treatment of
the data were
questionable”
(Schowalter
et al., 2021)

Lister and
Garcia
(2018)

Two
snapshots,
sampling
repetition

Forest
arthropods

Sticky-traps
(canopy)

1976e77
versus
2011e12

Puerto Rico Rainforest Decline
(�86%, July)
decline
(�62%;
January)

Biomass “Analytical
approach and
treatment of
the data were
questionable”
(Schowalter
et al., 2021)

Macgregor
et al.
(2019)

Continuous
time series

Moths Light traps
(Rotha
msted Insect
Survey)

1967e2017 UK Many types Increase until
1976, then
decline
(segmented
model),
overall
decline
(linear
model)

Biomass Corrected by
Macgregor
et al. (2021)

€Ockinger
et al.
(2006)

Two
periods,
sampling
repetition

Butterflies;
zygaenid
moths

13 sites,
transect
counts

1981e82
versus
2002e03

Sweden Grassland Decline
(�18.8%)

S



Rada et al.
(2019)

Continuous
time series

Butterflies Transect
counts

2005e16 Germany Many types Decline
(�10%)

S Negative trend
did not differ
between
Natura 2000
sites and
surroundings

Roth et al.
(2020)

Three
periods,
sampling
repetition

Water beetles 90 min time
catch

1999e95;
2007e08;
2017e18

Germany Lentic waters Decline (�2%) N

Roth et al.
(2020)

Three
periods,
sampling
repetition

Water beetles 90 min time
catch

1999e95;
2007e08;
2017e18

Germany Lentic waters Decline (�1%) S Homogenization

Schowalter
et al.
(2021)

Continuous
time series

Canopy
arthropods

Foliage
collection

1991e2019 Puerto Rico Rainforest Decline in 9
cases, no
consistent
response in
17 cases,
increase in 17
cases, decline
in insects of 3
host tree
species,
increase in
insects of 3
host tree
species

N Hurricane
response more
important than
climate change
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Table 3.2 Overview of the studies mentioned in this chapter. If not stated otherwise, change percentages in the column “Trend” refer to the entire study period.
N ¼ individual numbers, S ¼ species richness numbers.dcont'd

Study Study type Organisms Method Periods Geography Habitat type Trend
Target
measure Remarks

Schowalter
et al.
(2021)

Continuous
time series

Walkingstick
(Lamponius
portoricensis,
Phasmida)

Point count,
40 points

1991e2019 Puerto Rico Rainforest Decline N Repose to
hurricane
identity and
time after most
recent
hurricane

Schuch
et al.
(2012)

Two
periods,
sampling
repetition

Leafhoppers
and
planthoppers

Sweep-netting 1963e67
versus
2008e10

Germany Dry grassland Decline �40% N Strong turnover
in species

Seibold
et al.
(2019)

Continuous
time series

Arthropods Sweep
netting, 150
sites, 3
regions

2008e17 Germany Grassland Decline
(�67%)

Biomass

Seibold
et al.
(2019)

Continuous
time series

Arthropods Flight-
interception
traps, 140
sites, 3
regions

2008e17 Germany Forest Decline
(�41%)

Biomass

Seibold
et al.
(2019)

Continuous
time series

Arthropods Flight-
interception
traps, 140
sites, 3
regions

2008e17 Germany Forest Decline
(�36%)

S



Seibold
et al.
(2019)

Continuous
time series

Arthropods Flight-
interception
traps, 140
sites, 3
regions

2008e17 Germany Forest Decline
(�17%; n.s.)

N

Seibold
et al.
(2019)

Continuous
time series

Arthropods Sweep
netting, 150
sites, 3
regions

2008e17 Germany (3
regions)

Grassland Decline
(�34%)

S

Seibold
et al.
(2019)

Continuous
time series

Arthropods Sweep
netting, 150
sites, 3
regions

2008e17 Germany (3
regions)

Grassland Decline
(�78%)

N

Soroye et al.
(2020)

Two periods Bumble bees Database
analysis

1901e74
versus
2000e04

North
America,
Europe

All types Decline �46%
(North
America)
decline
�17%
(Europe)

Site
occupancy

Theng et al.
(2020)

Continuous
time series

Butterflies Database
analysis

1845
ePresent

Singapore All types Decline (�32%
for known
species,
�46%
including
unknown
undescribed
species)

S
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Table 3.2 Overview of the studies mentioned in this chapter. If not stated otherwise, change percentages in the column “Trend” refer to the entire study period.
N ¼ individual numbers, S ¼ species richness numbers.dcont'd

Study Study type Organisms Method Periods Geography Habitat type Trend
Target
measure Remarks

Thomas
et al.
(2004)

Two
periods,
sampling
repetition

Butterflies Volunteer
surveys

1970e82
versus
1995e99

UK All types Median decline
�13%, 71%
of butterfly
species are
declining

Grid cells Decline in
butterflies
worse than in
birds and plant
species.

van Lange
velde
et al.
(2018)

Continuous
time series

Butterflies Database
analysis

1985e2015 Netherlands All types Decline in
moths
attracted to
light

N

van Strien
et al.
(2019)

Continuous
time series

Butterflies Database
analysis

1890e2017 Netherlands All types Decline
(�84%)

Multispecies
indicator

van Swaay
(1990)

Continuous
time series

Butterflies Database
analysis

1901e80 Netherlands All types Decline in 46%
of species,
stability in
27% of
species,
fluctuation in
16% of
species
increase in
11% of
species

Grid cells



Wagner
et al.
(2021)

Continuous
time series

Moths Plot-based
collecting

2004e19 USA:
Arizona

Elevational
gradient

No strong
trends

N

Wagner
et al.
(2021)

Continuous
time series

Moths Plot-based
collecting

1997e2019 Costa Rica Rainforest Decline across
all
subfamilies

N

Wagner
et al.
(2021)

Continuous
time series

Moths Plot-based
collecting

2001e19 Ecuador Cloud forest No overall
trends

N

Wenzel
et al.
(2006)

Two
periods,
sampling
repetition

Butterflies;
zygaenid
moths

10 to 15
transect
counts per
year, 7
grassland
patches

1972 versus
2006

Germany,
surroun
dings of
Trier

Calcareous
grassland
remnants

Decline of
incidence in
40 species,
no change in
16 species,
increase in
one species

Site
occupancy

Wepprich
et al.
(2019)

Continuous
time series

Butterflies Transects,
volunteer
survey

1996e2016 USA: Ohio All types Decline �2%
per year

N

Woodcock
et al.
(2016)

Continuous
time series

Wild bees Database
analysis
(collected
by Bees,
Ants, and
Wasps
Recording
Society)

1994e2011 UK: England Oilseed rape Species-
specific trend
patterns

Grid cell
persis
tence

Significant
negative
effect of
neonicotinoids
on wild bee
persistence



Table 3.3 Alphabetic list of possible driving forces (causes) of insect decline (compiled from Potts et al., 2010; Habel et al., 2019; Cardoso
et al., 2020; Wagner, 2020).

Causes Brief justification
Current evidence of
impacts

Elevated
extinction
probability

Reduced
recolonization
probability

Forecast of
impacts Source (example)

Climate change Changes in
temperature
and other
climate
parameters
have direct and
indirect
positive and
negative effects
on insects and
their habitats
(including
decoupling of
life cycles and
trophic
networks)

High (for positive
impacts) low to
high (for negative
impacts)

Yes Increasing Soroye et al. (2020)
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Coextinction Interacting species
with a high
degree of
specialization
losing their
prey, host, or
partner will
decline as well
if unable to
adapt

Low Yes Increasing Colwell et al.
(2012), Kehoe
et al. (2021)

Habitat
degradation

Major to subtle
changes in the
quality of
habitats (e.g.,
losing structural
diversity or
habitat
complexity,
eutrophication)

High Yes Yes Increasing Pozsgai et al. (2022)

Habitat
fragmen
tation

Isolation of
habitats can
cause an
extinction debt

Medium Yes Increasing Hanski and
Ovaskainen
(2002)

Habitat loss Destroyed
ecosystems do
not provide a
habitat for
organisms

High Yes Yes Increasing Seibold et al. (2019)
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Table 3.3 Alphabetic list of possible driving forces (causes) of insect decline (compiled from Potts et al., 2010; Habel et al., 2019; Cardoso
et al., 2020; Wagner, 2020).dcont'd

Causes Brief justification
Current evidence of
impacts

Elevated
extinction
probability

Reduced
recolonization
probability

Forecast of
impacts Source (example)

Invasive alien
species

Invasive alien
species have
negative
impacts on
native species’
abundance and
diversity via
different
mechanisms

Medium Yes Increasing Tallamy et al. (2021)

Light pollution Some insects are
attracted to
artificial light
that interferes
with their
behavior and
ecology

Medium to high Yes Yes Increasing Owens et al. (2020)

Pesticides Insecticides kill
insects directly
or can have
sublethal effects

High Yes Increasing Liess et al. (2021)

Pollutants Pollutants (e.g.,
nitrogen,
microplastic)
can have direct
and indirect
effects on
insects

Medium to high Yes Increasing Richmond et al.
(2018), Windsor
et al. (2019)
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2019). Insects inhabit all possible habitat types except for the marine envi-
ronments (with the notable exception of a few marine water strider species)
and the highest mountains, making habitat loss a particularly relevant factor
across all insect groups. The sealing of land for infrastructure including ur-
banization, the deforestation of tropical forests, the transformation of land
for intensive food, feed, and biofuel production, the loss of set-aside agricul-
tural land to intensification, and the abandonment of traditional land use ac-
tivities, the construction of dams for energy production and spring tapping
all contribute to a dramatic change of the surface of the planet. While these
changes are not new and started several thousand years ago, their pace, qual-
ity, and quantity have become unmatched and unprecedented since the
1800s and again in the 1950s, the onset of the Anthropocene (Steffen,
Broadgate, et al., 2015). Many insect species are habitat specialists, often
restricted to a single host plant or specific microhabitat within an ecosystem,
and the significant increase of habitat loss from the 1950s onwards might
have translated - after some delay - into IDS.

The deterioration of habitat quality is a subtle process that can affect any
habitat characteristic. It is often used in connection with the loss of structural
complexity or habitat simplification, for example, the loss of microhabitats
such as lose stones or dead wood, the drainage of wet meadows or bogs, river
engineering, the homogenization of plant communities following eutrophi-
cation, or the intensification of cultural landscapes. In grassland habitats, the
discontinuation of extensive grazing has led to the decline of arthropod spe-
cies diversity (Pozsgai et al., 2022).

Habitat loss and deterioration are complemented by habitat fragmenta-
tion, which has developed into a controversial topic (Fahrig, 2017; Fahrig
et al., 2019; Fletcher et al., 2018). In practice, habitat fragmentation is usu-
ally closely linked to habitat loss, reinforcing its negative effects on insect
populations. Modern landscapes are increasingly characterized by networks
of transportation infrastructure, which severely impede insect movement
and recolonization abilities, even for species with flight ability and substantial
dispersal capacity.

The tight link between habitat loss, particularly in agricultural areas, and
the IDS has been shown in several studies. Hemberger et al. (2021) demon-
strate that increasing cropland extent and decreasing crop species richness
are associated with declines in more than 50% of the investigated bumble
bee species in the Midwestern United States. Seibold et al. (2019), in a
10-year multisite time series, relate the declines in German landscapes to
the set-aside abolishment of the European Union. In 2008, the economic
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set-aside was first suspended and then, in 2009, completely abolished as a
response to elevated demand for agricultural products, in particular feed
and biofuels. The decline in the fallow landscape element area shows a
remarkable correspondence with the curves displaying insect abundance
and biomass, illustrating the well-established relevance of seminatural land-
scape elements for the preservation of biodiversity in agricultural landscapes
(Tscharntke et al., 2011; Van Buskirk &Willi, 2004). While Daskalova et al.
(2021) suggest that this overall trend is not significant taking into account
temporal pseudoreplication and argue that short-time series are biased to-
ward extreme trends, Seibold et al. (2021) corroborate their original findings
and emphasize the value of short-term datasets to trigger conservation ac-
tion. Uhler et al. (2021) found the lowest insect species richness in agricul-
tural landscapes and the lowest biomass in urban landscapes in a study in
southern Germany, with both indicators increasing with temperature. Habel
et al. (2022) found two major time windows of butterfly decline in northern
Austria coinciding with periods of habitat destruction (in the late 19th cen-
tury) and deterioration of habitat quality (since the mid-20th century) due to
agricultural intensification.

Climate change
Anthropogenic climate change is unequivocally seen as one of the biggest
threats to biodiversity and human well-being (IPCC, 2021). Besides direct
effects from increasing average temperatures, for example, on develop-
mental cycles and behavior of ectothermic organisms such as insects, there
is a multitude of indirect effects triggering different responses leading to,
for example, distributional range shifts, desynchronization of phenologies
and decoupling of species interactions, cascading effects at different trophic
levels, niche shifts, and formation of altered species communities. The con-
sequences of other factors are less well investigated and clear, although of
particularly high relevance, for example, changing rainfall patterns, drought
and fire regimes, and magnitude and frequencies of extreme weather events
(Halsch et al., 2021; Wepprich et al., 2019). Harris et al. (2019) found a cor-
relation between the decline of abundances (83%) and species richness (39%)
of forest beetles in the northern United States of America (USA) with
increasing winter temperatures. Soroye et al. (2020) found that increasing
number of hot days increased local extinction rates in bumblebees in North
America and Europe.
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Depending on species dispersal capabilities and adaptive capacities, rapid
environmental changes can lead to selective advantages or disadvantages
(Bowler et al., 2015). Pöyry et al. (2011), for example, found an increase
in the occurrence of multivoltinism in moth communities in Finland be-
tween 1963 and 2006 as a response to increasing spring and summer temper-
atures. The commonplace notion of “winners and losers” of climate change
is true but ignores the fact that chances are not equally distributed between
organisms, with generalist species often being the winners and specialists be-
ing the losers. The latter are under threat from other drivers of change as
well, making climate change an important aggravating factor to consider
for nature conservation.

Impacts of climate change on species survival will be translated with a
substantial time lag; in a metapopulation-structured species, it may take a
long time until all populations become extinct owing to extreme weather
conditions or unsuitable periods. It is therefore not surprising that evidence
for extinctions due to climate change is still rare, evoking the notion of
“tipping points” of environmental change (see also below). In summary,
while explicit evidence for climate change being responsible for IDS is
currently limited, a substantial impact is likely and becoming even more
important in the future (IPCC, 2021).

A growing body of evidence suggests that climate change and habitat loss
are acting synergistically in promoting biodiversity decline and the IDS
(Brook et al., 2008; Forister et al., 2016; Fox et al., 2014; Outhwaite
et al., 2022; Wagner et al., 2021); in regions highly impacted by agricultural
land use, climate change was observed to have a much more detrimental in-
fluence on insect abundance than in undisturbed areas (Herrera, 2019).

Pesticides
Pesticides are widely used in food production around the world to secure
and maximize harvest. Their application has increased with the intensifica-
tion of agricultural practices, especially since the 1950s. As selection effects
led to resistance, new compounds have been continuously developed,
including the group of neonicotinoids, substances interfering with the ner-
vous system of insects. Over the past 25 years, neonicotinoids have largely
replaced organophosphorus insecticides in many parts of the world, partic-
ularly in the USA (DiBartolomeis et al., 2019). Since neonicotinoids are up
to 10,000 times more effective than organophosphorus insecticides, this has
led to an absolute reduction in insecticide application, yet with more
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profound effects. Of particular concern are the systemic effects of neonico-
tinoids; usually, seeds are treated and this is sufficient for the whole plant to
be toxic to insects. Neonicotinoids have been found to pass through food
chains from plants through plant-feeding insects to their parasites (Calvo-
Agudo et al., 2019). An exact understanding of their retention in soil is lack-
ing, but experiments have shown high persistence, from around 1 year to
about 20 years (6931 days) of DT50 dissipation times, meaning that environ-
mental accumulation has to be expected when neonicotinoids are applied
regularly; they are also water soluble and can leach into waterways (Goulson,
2013). Neonicotinoids have been related to wild bee declines (Woodcock
et al., 2016), and wide-ranging effects on the entire arthropod fauna and
food webs have been shown (Hallmann et al., 2014).

Insecticides are developed to kill insects, but they also have sublethal ef-
fects (Desneux et al., 2007) and are persistent in the environment (Geiger
et al., 2010). Herbicides and fungicides target other organisms, but direct
and indirect negative effects on insects have also been documented (Goulet
& Masner, 2017; McArt et al., 2017; S�anchez-Bayo, 2021). The destruction
of host plants deprives them of food resources and protection, but herbicides
also induce changes in species communities (e.g., via release from competi-
tion or predation or changes in plant metabolism). Pesticides can be trans-
ported with airborne particles beyond the target areas and might affect
not only adjacent but also distant ecosystems (Nascimento et al., 2017). In
a large-scale study in Germany, Liess et al. (2021) found that agricultural
nonpoint-source pesticide pollution was the major driver in reducing
vulnerable insect populations in aquatic invertebrate communities,
exceeding other anthropogenic stressors. Ewald et al. (2015) found that
pesticide use was more important in explaining the long-term trends of
several insect groups in agricultural fields in England than temperature
and rainfall. Forister et al. (2016) showed that neonicotinoids have additional
explanatory value to the observed declines of butterflies in California after
the effects of land use change were factored out statistically. A meta-
analysis of arthropod species diversity in conventional versus organic agricul-
tural systems (94 studies covering 30 years) revealed that organic fields had
20% higher diversities (Tuck et al., 2014). A similar study (98 studies
covering 27 years) found 22% higher species numbers and 36% higher abun-
dances of insects in organic fields (Stein-Bachinger et al., 2021).

Due to the side effects on nontarget organisms, restrictions are applied
and the use of insecticides and of pesticides, in general, is intensively debated
between the industry and nature conservation groups (Br€uhl & Zaller, 2019;
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Goulson, 2018). The authorization of neonicotinoid insecticides has been
revoked in some countries and for some applications, but a general ban
has not been issued. The accumulation and their long half-life in the envi-
ronment, their passage through food chains, the illegal use of banned chem-
icals, the airborne transportation beyond the agricultural fields, and the
continuous and global use of insecticides for decades make them one of
the most likely factors responsible for IDS.

Invasive alien species
The negative impacts of invasive alien species (IAS) on insects are considered
in detail in the following chapters of this book (Chapters 5e9). Impacts can
occur when IAS prey or parasitize on native species, compete for resources,
transmit pathogens and diseases, hybridize with natives, and/or have nega-
tive effects on ecosystem functions. Consequences are particularly severe
on islands with a high degree of endemism and are generally higher in the
southern than in the northern hemisphere (Bellard et al., 2016, 2017; Mollot
et al., 2017; Py�sek et al., 2017). Some case studies are available for alien in-
sects (Holway et al., 2002; Kenis et al., 2009); see also Chapter 6, but gen-
eralizations or extrapolations are difficult, and it is not known how
transferable these results are within such a mega-diverse group as insects. Ev-
idence of invasive alien insect species having negative impacts on forest eco-
systems is abundant, especially in the northern hemisphere, and often
considered from an economic perspective, but could have underestimated
knock-on effects on native species. Tallamy et al. (2021) found that the
loss or decline of food and habitat if native plants are replaced by alien plants
can have a significant impact on insect species. Indeed, Wagner and Van
Driesche (2010) ranked IAS as the second most important threat (after
habitat loss) to protected insects in the USA, in particular alien plants trig-
gering a subsequent loss of native (host) plants. The impacts of invasive insect
species on pollination have been documented as well (Rojas-Nossa &
Calvi~no-Cancela, 2020), highlighting the worrying decline of function
and services. Other drivers of environmental change, particularly climate
change and habitat degradation, interact and promote biological invasions
(Bellard et al., 2013). In conclusion, there is evidence of a negative impact
of alien animal and plant species on insect diversity, and although the magni-
tude and scale of impacts are less well explored, it appears that IAS have a
significant role in IDS that require more detailed research (Vanbergen
et al., 2018).
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Light pollution
Negative effects of the use of artificial light during night hours are well
documented (Grubisic et al., 2018; Macgregor et al., 2017; van Langevelde
et al., 2018) and include influences on biorhythm, reproduction and devel-
opmental processes, behavior, and orientation (Owens & Lewis, 2018).
Globally, the artificially illuminated land area at night exceeds the area of
agriculturally used land substantially (Owens et al., 2020). The attraction
of insects toward artificial light is also utilized by predators (e.g., spiders
and bats) (Heiling, 1999). The quantities of insects killed by artificial lighting
are impressive and probably reach millions of individuals every single night.
A key factor for the magnitude of impact is the emitted light spectrum: the
higher the UV emissions, the higher the fatal attraction for insects. Energy-
saving LED lighting might be compounding the negative effects on insects,
since these new types of light sources emit a higher proportion of biologi-
cally relevant blue light (Boyes et al., 2021).

Not all declining insects are nocturnal and insect declines have been
documented in areas without profound changes in artificial lighting (Hall-
mann et al., 2017); consequently, light pollution alone cannot explain
IDS. However, evidence is accumulating that artificial light at night is a sub-
stantial and currently still vastly underappreciated driver of IDS (Gaston
et al., 2021; Hölker et al., 2010; Owens et al., 2020) with profound effects
on ecosystem services such as pollination (Knop et al., 2017) and ecosystem
function (Giavi et al., 2020).

Insect-friendly illuminations are available and should be used wherever
possible. Among the measures against light pollution are shielding (especially
toward the sky), filtering out biologically effective wavelengths, scheduled
operations, and dark zones, especially in protected areas (J€agerbrand & Bour-
oussis, 2021). However, the biggest problem of light pollution appears to be
that it is still not widely perceived as an environmental issue, let alone a po-
tential trigger of the IDS.

Pollutants
Environmental pollution has a long history, from the Industrial Revolution
in the 1800s (and insect adaptations such as industrial melanism) to the more
recent microplastic and pharmaceutical contamination of aquatic habitats
(Richmond et al., 2018; Windsor et al., 2019). As a consequence of industry,
traffic, energy production, and agriculture, the excessive nitrogen emissions
have caused eutrophication effects over large areas, including pristine and
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remote areas (Kurze et al., 2018; €Ockinger et al., 2006). This eutrophication
causes the homogenization of plant communities with subsequent effects on
herbivorous insects (Abrahamczyk et al., 2020) and is a leading cause of the
deterioration of habitat quality. While negative effects from pollutants are
evident, the documentation and causal interpretations of these impacts on
insects are scarce and probably insufficient to explain a global IDS.

Coextinction
No animal species can live a completely self-sufficient life and depends on
other species for food, as hosts, or for different other forms of relationships.
Species interactions in natural communities are complex and often difficult
to disentangle comprehensibly. In general, the higher the degree of special-
ization, such as for monophagous herbivores, host-specific parasites, com-
mensals, or symbionts, the higher the risk of extinction if the partner
species is in decline. There is currently little empirical evidence for coextinc-
tion (Bogoni et al., 2019; Colwell et al., 2012), but it is a plausible scenario
with large-scale effects in the future as soon as extinction rates are increasing
(Dunn, 2005; Dunn et al., 2009; Kehoe et al., 2021; Morton et al., 2022).
For example, ash trees (Fraxinus spp.) suffer from a widespread decline in
North America and Europe due to the invasion of the Asian fungi pathogen
Chalara fraxinea and the Emerald Ash borer (Agrilus planipennis); it is reason-
able to assume that native herbivorous insects depending on ash as host trees
will experience codeclines in the near future (Gandhi & Herms, 2010); see
also Chapters 5 and 6. Coextinction interacts with the other drivers of
change, specifically habitat loss and climate change (Dunn et al., 2009;
Kehoe et al., 2021). However, it is poorly documented and understood
and hence its role as a factor to explain IDS remains ambiguous.

Can IDS cause a tipping point for insect populations,
ecosystem functions, and ecosystem services?

The rise of metapopulation theory evoked much interest in the con-
sequences of isolation and fragmentation of populations. Single populations
are threatened by demographic, genetic, and environmental stochasticity
(i.e., the random fluctuation of abiotic and biotic conditions), with popula-
tion size being an important buffer against these threats. If populations go
extinct, recolonization of empty habitat patches may compensate for these
losses.
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For a metapopulation to survive, extinction and recolonization events of
single populations must be balanced over long timespans within the entire
metapopulation. In other words, for any local extinction event within the
metapopulation, recolonization of an empty habitat patch must be possible.
This balance has already been tilted toward an increase in extinction events
and a reduction of recolonization. Extinction of a complete metapopulation,
however, is a slow process. Metapopulation extinction might thus lag the
original landscape change (or other pressures) by decades; changes in the bal-
ance between extinction and recolonization might therefore become
apparent only at a much later point in time. The original intervention
causing the change in landscape capacity is thus triggering an “extinction
debt” to be paid, possibly only after several years or decades (Fig. 3.1) (Han-
ski & Ovaskainen, 2002). The metapopulation perspective might be a suit-
able framework (1) to integrate the possible IDS root causes described above
and (2) to date back the reasons for the currently observed decline rates to
triggers of earlier times and (3) to explain a precipitous decline of individual
and species numbers above a certain threshold of habitat destruction.
(1) All of the possible causes of insect decline influence the extinctione

recolonization balance (Table 3.3). Habitat loss increases the distance
between single habitat patches, making recolonizations less likely.
Climate change, especially weather extremes, increases the probability
of local population extinctions. Pesticides elevate the local mortality
of insect populations. Light pollution might act as a barrier, precluding
recolonization, and as a local mortality source.

(2) For a species that lives in isolated single populations no longer con-
nected by recolonization events, it is fairly possible that the species is
doomed despite occupying a large range and showing decent individual
numbers living in the isolated patches for some time. Climatic extremes,
new pesticides, or increased light pollution could be the fuse for this
metapopulation time bomb, causing local population extinctions that
cannot be compensated by recolonization events anymore, leading to
a widespread short-term decline in individual numbers owing to a
landscape pattern that has been created by human intervention in the
past (Fig. 3.1). Metapopulation theorists were predicting a future pre-
cipitous decline of population numbers as a reaction to a transformed
landscape structure 3 decades ago (Hanski et al., 1996).
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(3) Nonlinearities, bifurcations, thresholds, and tipping points have been
identified in the development of metapopulation theory (Bascompte
& Solé, 1996): If habitat loss reaches a certain species-specific
threshold amount of habitat area, tiny additional losses may trigger
substantial reductions in recolonization rates, leading to a precipitous
reduction in individual numbers and a continuous disbalance between
extinction and recolonization. Beyond this threshold in landscape ca-
pacity, abundance declines are no longer proportional to the amount of
remaining habitat but are exacerbated by reduced recolonization pos-
sibilities (Fig. 3.1). In the models, this threshold is usually reached when
continuous habitat disintegrates into separate isolated habitat patches.
These dynamics show many similarities to climate change tipping points

(Lenton et al., 2008): a small threshold range, qualitative changes of the sys-
tem beyond the threshold, self-perpetuating acceleration, and potentially
far-reaching consequences for the functioning of the ecosystems. At present,
we do not know for sure if and when certain ecosystem functions or
ecosystem services will break down or enter a new state if the decline of in-
sect abundances and biomass, species richness, and functional diversity con-
tinues or accelerates. However, such deterioration of ecosystem services
(e.g., pollination) is certainly possible, and dire consequences for human
well-being are plausible, as they are predicted for biodiversity loss in general
(IPBES, 2019).

Conclusions and outlook

Insect decline rates of extraordinary magnitude have sparked alarm,
triggered an extraordinary amount of publicity, and raised many questions
about the underlying environmental factors. Some of the interpretations
might have been exaggerated; on the other hand, recent declines can be
perceived as a short-term intensification of a century-long process (Habel
et al., 2016; Theng et al., 2020). From the available evidence, we have little
doubt that IDS is a complex, nonlinear and multifactorial, context-
dependent phenomenon. It mirrors the mega-diversity of insects and
long-term environmental deterioration processes associated with the
Anthropocene. The discussion surrounding IDS has shown the lack of reli-
able long-term data on insect abundances. It is remarkable and revealing that
one of the most publicized and discussed scientific articles of the year 2017
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(Atkins, 2017), the paper by Hallmann et al. (2017), is based on enthusiasm
performed by amateurs. Apparently, academia, scientific research institutes,
established environmental monitoring agencies, and their financing bodies
are not ideally prepared to support demanding, laborious long-term work
that may or may not bear fruit. However, even if such long-term research

Figure 3.1 Declining recolonization probability in a metapopulation and possible
tipping points. (A) In the original landscape state, populations occasionally go extinct
and habitat patches are recolonized with individuals from populations in adjacent
patches. (B) Over time, human intervention may lead to habitat destruction. As long
as recolonization is still uninhibited, this will lead to a population decline that is propor-
tional to habitat loss; the number of populations can be expected to decline with the
amount of habitat. (C) As soon as additional barriers are introduced, the extinctione
recolonization balance becomes distorted toward extinction. Even suitable habitat
patches may remain unoccupied because distances between patches have become
too large and/or barriers are impeding individual movement. (D) Now, the relationship
between habitat area (or the number of habitat patches) and population numbers be-
comes nonlinear; loss of habitat is exacerbated by recolonization inability. The new
metapopulation equilibrium might be zero, i.e., loss of all populations in the region.
However, this new equilibrium will only be reached as soon as all local isolated popu-
lations become extinct. Depending on the species and the landscape structure, this
may take a long time. Criteria for a tipping point are met: (1) at a certain landscape
configuration, the metapopulation pivots to a new equilibrium, which may be regional
extinction. (2) Without the reestablishment of movement corridors and habitat patches
acting as steppingstones, i.e., a reenhancement of landscape capacity, the process is
irreversible. From Wolfgang Rabitsch and Klaus Peter Zulka.
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is established and performed over long periods (Storkey et al., 2016), it may
still be difficult to explain the trends observed in this way (Macgregor et al.,
2021). There is no easy remedy for these deficits. A lack of long-term
research data cannot be fixed in the short term.

It is evident that more research is needed to answer some of the open
questions in relation to IDS. However, varying conclusions reached in
meta-analyses might rather stem from the selection of included studies
and the inherent noise within data from such a diverse group of organisms.
A universal global cross-taxa, cross-habitat, and cross-region answer to the
causes of IDS cannot be expected from such analyses. Long-term moni-
toring data are indispensable, but a lack of such data cannot be overcome
by backcasting present studies. New studies will generate results only de-
cades from now. “BeforeeAfter” studies with a standardized methodology
are useful approaches and should be executed using different taxa, habitats,
and regions, but must be interpreted with all due caution owing to unspec-
ified baselines, extreme population fluctuations typical for insects, and the
inherent lack of temporal replication. Even if they might not deliver useful
results for a global meta-analysis, they can be useful within a given context of
specific regional or local research questions.

We caution that an exaggerated focus on the question of which factor
contributes how much to IDS is not overly helpful. While it might be an
important key to address the root causes of IDS, the multiplicity and inter-
action of factors have always been evident, and identification of particular
main drivers might frequently be futile or altogether impossible. It distracts
from the fact that many stakeholders have to take responsibility, it might
delay action, it fosters scapegoating, and it disregards the richness of the
toolbox already available for insect conservation action (Samways, 2020).
Multitargeted action plans are needed to address the major drivers of IDS
and embrace authorities, stakeholders, and the public in taking action at
all levels. In particular, well-known and long-lasting pressures impinging
on insect biodiversity need to be reduced if IDS is to be stopped and
reversed. In this regard, IDS is not much different from the more general
management of biodiversity crisis for which solutions exist (IPBES, 2019;
Ripple et al., 2017). It is also important that measures extend beyond pro-
tected areas to conserve insect biodiversity. We do not know everything
about IDS, but we know enough to highlight its enormous significance
for biodiversity and human well-being and the urgent need for taking con-
servation action (Cowie et al., 2022; Didham et al., 2020; Harvey et al.,
2020; Habel et al., 2019; Samways et al., 2020).
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Introduction

Globalization and trade have become major drivers of the intentional
and unintentional movement of species around the world (Hulme, 2009).
Human activities such as air and marine transport (e.g., hull fouling on ships,
snakes in airplane landing gear) or tourism have contributed to the introduc-
tion of alien species (Burgiel et al., 2006). Nonetheless, trade continues to be
the main pathway of introduction of emerging invaders (Hulme, 2021).
Invasive populations have been shown to recruit from ornamental plant
trade (Hulme et al., 2018; Chapter 5), insects used for agriculture and other
commercial purposes (Bang & Courchamp, 2021; Colla et al., 2006; Roy &
Wajnberg, 2008; Chapter 6), noninsect invertebrates used as food or bait
(Hasson et al., 2006; Kilian et al., 2012; Chapter 7), and vertebrates such
as amphibians, birds, fishes, mammals, or reptiles used as pets or for recrea-
tional activities (Duggan et al., 2006; van Wilgen et al., 2010; Chapter 8).

Historically, humans have deliberately introduced a wide range of spe-
cies, especially domesticated plants and animals, but today the trade in living
organisms for nonutilitarian reasons has rocketed (Gippet & Bertelsmeier,
2021). The accentuation of free trade has created more opportunities for
the accidental and deliberate introduction of species (Burgiel et al., 2006).
The number of living species imported into different countries under per-
mits issued by the Convention on International Trade in Endangered Spe-
cies of wild fauna and flora (CITES) nearly quadrupled in recent decades
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(Auliya, 2003; Harfoot et al., 2018), mainly due to increase in the global de-
mand for pets (Lockwood et al., 2019; Shivambu, T. C. et al., 2022; Su
et al., 2022; Yuliana et al., 2021). The global trade volume in wildlife species
recorded by CITES is estimated to exceed 16.75 million trade records over
40 years. Nonetheless, this amount may be underestimated since most coun-
tries do not distinguish for CITES-listed taxa (Harfoot et al., 2018). There is
increasing concern about the implications of this trade for biosecurity, espe-
cially because many introduced plants and animals have already become
invasive (Cardoso et al., 2021; Hulme et al., 2018; van Wilgen et al., 2010).

In this chapter, we review the impact of global trade on the introduction
and spread of alien species and its contribution to biological invasions. Addi-
tionally, we emphasize the importance of implementing measures to prevent
accidental introductions and regulations to ban or avoid the deliberate intro-
duction of invasive species, which can have a significant impact on insect
conservation (see Chapters 5e9).

Plants

Growing consumer demand and enthusiasm for plants and nature pro-
pel the horticultural sector (Beaury et al., 2021; Gagliardi & Brand, 2007).
The primary goal of ornamental nurseries is to sell as many plant products
as possible, with marketable characteristics, to as many buyers and in as
wide a market as possible (Drew et al., 2010). Horticulture was first thor-
oughly analyzed as a vector for introducing invasive plants in 1990
(Dehnen-Schmutz et al., 2007). Since then, research studies in countries
such as Australia, Czech Republic, Germany, New Zealand, South Africa,
the United Kingdom (UK), and the United States of America (USA)
have shown that horticulture has played a crucial role in the introduction
and spread of many plant invaders (Hulme et al., 2018; Lambdon et al.,
2008; Py�sek et al., 2022; van Kleunen et al., 2018). Horticultural activities
can contribute to invasions in two ways: by (1) increasing propagule pressure
and (2) promoting traits that enhance the probability of establishment and
escape (Kowarik, 2003; Mack, 2000). Many of the traits desirable for horti-
culture are obtained through species selection. For example, traits such as
easy growing and propagation, rapid and profuse seedling emergence, fast
vegetative growth, and resistance to pests and pathogens not only enhance
the attractiveness of cultivated plants but also contribute to their invasiveness
(van Kleunen et al., 2018). Other aspects related to their commercialization
- being frequently available on the market, at low prices, and introduced
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long ago - also increase the probability of alien plants’ escape and invasion
(Dehnen-Schmutz et al., 2007).

Identifying plants by their morphological characteristics is widely used to
detect invasive species and prevent their introduction beyond their native
range. However, this can pose difficulties, particularly in the case of seeds
or seedlings, when there are similar species or hybrids or when they have
no flowers or these are small (Van den Neucker & Scheers, 2022). These
challenges, combined with a lack of knowledge among horticulture profes-
sionals, can lead to the misidentification and mislabeling of species, perpet-
uating the trade of invasive species (Vanderhoeven et al., 2011). For
example, Novoa et al. (2017) found that only 5.7% of 263 ornamental cactus
species imported to South Africa were adequately labeled to the species
levels, and Van den Neucker and Scheers (2022) found that approximately
40% of the aquatic taxa in their study were mislabeled due to the use of taxo-
nomic synonyms, unregistered trade names, misspellings, or
misidentification.

Although it is widely assumed that most invasive plants were introduced
deliberately (see Chapter 5), horticultural practices may also contribute un-
intentionally to the introduction of other plant species, or even other organ-
isms (e.g., insect and pathogens invasions; Liebhold et al., 2012), as
stowaways or contaminants (Brundu, 2015; Hulme et al., 2008; Mack &
Erneberg, 2002). For example, in an experiment carried out by Maki and
Galatowitsch (2004) where orders were placed with aquatic plant vendors
across the USA, not only the authors received noxious weeds or prohibited
exotic aquatic species in 92% of the times they were ordered, but also 93% of
all orders contained a plant or animal species not requested. Of these species
unintendedly sent, 10% were federal noxious weeds or alien species of
concern in the USA. Similarly, a study by Lehan et al. (2013) found that
accidental introductions to the USA of invasive plant species, such as Acrop-
tilon repens, Centaurea solstitialis, Chondrilla juncea, Cirsium arvense, and Lepi-
dium latifolium, occur through seed contamination in ornamental plant
seed stocks, in ballast water, and other imports (e.g., livestock or packaging).
More recently, researchers in Belgium found stowaway species in display
trays at retailers specialized in selling water gardening items, including prob-
lematic aquatic plant invaders such Azolla filiculoides and Lemna minuta (Van
den Neucker & Scheers, 2022).

In the coming decades, the number of plant species associated with hor-
ticulture is expected to increase (Bradley et al., 2012; Drew et al., 2010) due
to the boosted interest in traded species and other factors associated with
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globalization, for example, improved long-distance connections, new forms
of trade such as e-commerce or mail order, greater trade volumes, and more
complex trade networks (van Kleunen et al., 2018). Regulations on the
movement of species may limit the sale of invasive plants. However, decades
of research demonstrate that many invaders are still available from nurseries,
online markets, and hobbyist social media communities (Beaury et al., 2021;
June-Wells et al., 2012; Kay & Hoyle, 2001; Vanderhoeven et al., 2011).

Although the nature conservation and horticulture professionals are con-
cerned about plant invasions, few have adequate information about this issue
(Vanderhoeven et al., 2011). Therefore, designing and implementing inten-
sive outreach programs, either focused on specific sectors or aimed at a gen-
eral audience, could be effective educational tools to raise awareness and
help reduce impacts. Furthermore, it is necessary to involve managers and
professionals in horticulture and other commercial activities in developing
policies and best invasive plant management practices (Vanderhoeven
et al., 2011). For example, a potential solution is the creation of open global
databases of invasive species, including keys to identify them (Lehan et al.,
2013), particularly their seeds (e.g., screening of seed imports of Cactaceae
species; Novoa et al., 2016). Such databases could assist authorities and cus-
toms officials in establishing accurate diagnoses and action protocols based
on plant characteristics (Lehan et al., 2013). Similarly, the use of native plants
in landscaping and horticulture should be encouraged, as it has important
conservation implications even at small geographic scales (Chapter 5).

Insects

Humans have used insects and their products for thousands of years
(Kampmeier & Irwin, 2009). However, increasing public demand provided
some alien insects with commercial value as biocontrol agents, food and
feed, and pollination services (Kumschick et al., 2016) and recognized their
role in various recreational activities, as pet food, and for research (DeFoliart,
1997; Szelei et al., 2011). Furthermore, particular insects can be of interest to
collectors, resulting in the breeding and commerce of insects for the art
trade, collections, jewelry, displays, or insectaria (Gippet & Bertelsmeier,
2021; Hardouin, 1995; Kampmeier & Irwin, 2009).

Knowledge of the historical introduction of insects is often limited, as
they frequently arrive as stowaways (Faulkner et al., 2016; Weyl et al.,
2020), and some introduced species are difficult to identify (Janion-
Scheepers & Griffiths, 2020). For example, storage products such as grain
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and wood are essential sources of insect pest introductions (Aguin-Pombo,
2012; Lovett et al., 2016). However, although there is a paucity of informa-
tion on the origin and time of arrival for many alien insects, some are docu-
mented. This is the case, for example, of the Asian tiger mosquito Aedes
albopictus, first detected in South Africa in 1990 (Cornel & Hunt, 1991),
the Asian yellow-legged hornet Vespa velutina, detected for the first time
in France in 2004 (Haxaire et al., 2006), the German wasp Vespula germanica
introduced from Europe to Australasia in mid-20th century (Spradbery &
Maywald, 1992), or the water boatman Trichocorixa verticalis in South Africa,
with current knowledge limited to records of occurrence, not introduction
(Weyl et al., 2020).

Invasive ants are one of the major groups of insect species that can signif-
icantly impact ecosystems (Bertelsmeier et al., 2017). First, the spread of
invasive ants was initially only due to accidental introductions. However,
due to the rapid development of internet trade, ants began to be sold as
pets globally (Gippet & Bertelsmeier, 2021). Species such as fire ants Solenop-
sis invicta (Ascunce et al., 2011) and Solenopsis geminata (Gotzek et al., 2015)
and the big-headed ant Pheidole megacephala (Ward et al., 2006), among
others, are the most introduced and worst ant invaders worldwide. These
species are commercially successful as they have rather generalist habitat re-
quirements and large spatial distributions, which are also associated with
their invasiveness (Gippet & Bertelsmeier, 2021).

The growing popularity of insects as food and feed has led to large-scale
rearing and increased commercial sales of insects in different parts of the
world (Bartel & Altizer, 2012). For example, in the USA alone, more
than one billion of insect individuals were imported to supply the pet market
over six years (Smith et al., 2009). Previous studies have researched the rele-
vance of the trade in specific insect species; for example, according to the
National Pet Owners Survey (American Pet Products Association, APPA),
the European cricket Acheta domesticus is often the preferred food purchased
to feed reptiles in US households. It is estimated that in 2010, reptile food
expenditures in the USA were $650 million, of which about 19%e29%
may have been for A. domesticus (Szelei et al., 2011). Similarly, commercial
sales of living butterflies (e.g., the American painted lady Vanessa virginiensis
and the monarch Danaus plexippus) is a growing business in the USA for the
wedding industry and educational programs, reaching an estimated revenue
of $200 million per year (Bartel & Altizer, 2012). Furthermore, the mass
rearing of butterflies for live exhibitions in zoos and other related activities
(i.e., butterfly house industry) is estimated to have an annual turnover of
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about $100 million on the global market (Boppré & Vane-Wright, 2012).
Another example of an invasive insect used commercially as food and feed
is the Asian palm weevil Rhynchophorus ferrugineus, now present in all conti-
nents and considered a pest in many areas worldwide (Fiaboe et al., 2012).

With the increasing demand and unintentional movement of insect spe-
cies, it is more necessary than ever to regulate and monitor the trade of spe-
cies across international borders (Early et al., 2016). Border controls and
quarantines remain the primary means of preventing the introduction of
invasive insects (Bacon et al., 2012; Ward et al., 2006). A potential alterna-
tive to reduce the possible impacts of invasive species is to promote the use of
native insect species, as they are likely to pose lower risk to the local envi-
ronment (Bang & Courchamp, 2021; van Huis et al., 2013).

Noninsect invertebrates

Most invasive noninsect invertebrates that can impact insects, such as
crustaceans and arachnids, are unintentionally introduced into new environ-
ments as contaminants or stowaways (Kobelt & Nentwig, 2008; Picker &
Griffiths, 2017), although some are intentionally relocated for food, pet
food, or as pets (Lodge et al., 2012; Nelufule et al., 2020; Patoka et al.,
2018).

Global ornamental trade is one of the major vectors contributing to the
translocation of freshwater animal species (Belle et al., 2011). For example,
crayfish species are often introduced to aquatic ecosystems through release or
escape (McClain, 2021; Patoka et al., 2018; Weyl et al., 2020). Humans use
various crayfish species for aquaculture, as fish bait, as ornamental in aquaria,
for feeding other aquatic species, and for educational and scientific purposes
(Faulkes, 2015; Oficialdegui et al., 2019; Patoka, Bl�aha et al., 2015; Patoka
et al., 2016). Some of the most popular species used for those purposes
include, for example, Cherax destructor, Cherax quadricarinatus, Pacifastacus
leniusculus, or Procambarus clarkii (Baudry et al., 2022; Faulkes, 2015; Holdich
et al., 2014; Lodge et al., 2012; Patoka, Kalous et al., 2015).

Trade in crayfish as ornamental species began in the 1990s and involves
the capture and cultivation of crayfish in both indoor and outdoor facilities
(Chucholl, 2013; McClain, 2021). Global production of ornamental crayfish
is mainly located in Indonesia (Faulkes, 2015; Patoka, Kalous et al., 2015),
where invasive species, such as some species of the genus Cherax and North
American P. clarkii, are farmed (Yuliana et al., 2021). The continued escape
and release of high-risk species from aquaria is the main contributor to the
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establishment of invasive crayfish in many parts of the world (Andriantsoa
et al., 2019; Chucholl & Wendler, 2017; Holdich et al., 2014; Oficialdegui
et al., 2019; Weiperth et al., 2017; Yuliana et al., 2021). These invasions
have resulted in negative impacts on native aquatic life and socio-
economic losses (Oficialdegui et al., 2019).

To mitigate further harm from introducing invasive crayfish, a significant
reduction in the availability of these species (Chucholl, 2013) combined
with the regulation of their trade can be a promising solution (Chucholl
& Wendler, 2017; Dickey et al., 2022; Nelufule et al., 2020). However,
more effort is required. For example, despite strict legislation in the UK,
the North American signal crayfish Pacifastacus leniusculus continues being
illegaly introduced (Holdich et al., 2014). Controlling and managing this
invasive species and repairing the damage it causes is estimated to cost
over £2 million annually in the UK, and this figure is expected to increase
as the crayfish population grows (Holdich et al., 2014). Hence, once a spe-
cies has been introduced to a new area, management strategies should aim to
reduce its spread and impacts by preventing secondary introductions (Ofi-
cialdegui et al., 2019).

Arachnids have also been widely introduced outside their native ranges.
For example, the ectoparasitic mite Varroa destructor has spread as a contam-
inant through the global trade in domestic bees and bumblebees (Mayfield
et al., 2021). Originating in Asia,Varroamites is now present in all continents
except Australasia, causing significant damage to the beekeeping industry
and wild bee colonies, leading to substantial economic losses worldwide
(Cook et al., 2007). Other invasive arachnids have expanded as a result of
human transport, such as the brown widow spider Latrodectus geometricus in
North and South America, Hawaii, and across Australasia (Garb et al.,
2004; Ono, 1995), or redback spider Latrodectus hasseltii in Japan and New
Zealand (Ono, 1995). Kobelt and Nentwing (2008) reported 87 uninten-
tional introductions of spider species in Europe between 1850 and 2000.
These introductions are thought to be primarily related to global trade in
goods. Nonetheless, keeping spiders as pets has become a popular and
rapidly increasing hobby in some parts of the world, as with tarantulas in
South Africa (Shivambu, Shivambu, Lyle, 2020). There are at least 195 spe-
cies of tarantulas available for sale in South Africa, which represents 20% of
known tarantula species worldwide (Shivambu, Shivambu, Lyle et al.,
2020). These authors demonstrated that the majority of species sold in pet
stores are misidentified, constituting a significant problem in the establish-
ment of regulations to control their trade.
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The potential impact on insects of other invasive invertebrates, such as
earthworms, is not well understood (Chapter 7). Yet, since earthworms
play an important role as ecosystem engineers (Hendrix et al., 2008), they
may affect above- and below-ground communities of native insects by
causing alterations in soil properties, nutrient cycles, and organic matter.
Interestingly, many invasive earthworms were introduced as fish bait and
in the vermicomposting trade, which facilitated their transportation and
spread to new locations (Janion-Scheepers & Griffiths, 2020).

Vertebrates

In contrast to invertebrates, most vertebrates are intentionally intro-
duced (Picker & Griffiths, 2017). The pet trade is the most important
pathway for introducing alien vertebrate species (Hulme et al., 2008; Shi-
vambu, T. C. et al., 2022). Fish, amphibians, reptiles, birds, and small mam-
mals are the most popular pets worldwide (Gippet & Bertelsmeier, 2021;
Martin & Coetzee, 2011; Shivambu, T. C. et al., 2022; Su et al., 2022;
vanWilgen et al., 2010). Invasive species are still greatly represented in trade,
constituting approximately 12.6% of species traded worldwide (Gippet &
Bertelsmeier, 2021). Most traded vertebrates have relatively high reproduc-
tive rates and long reproductive lifespans (Street et al., 2023). Many traded
vertebrate species established in new regions and novel habitats after being
deliberately released or escaped from captivity (Akmal et al., 2022; Hulme,
2007; Hulme et al., 2008).

The invasion of vertebrate species can severely impact insect populations,
directly through predation or indirectly by habitat alteration (Chapter 8). To
regulate the trade in alien vertebrates, governments should implement re-
strictions. The USA, for example, implemented regulations in 1992 to
ban the trade in wild birds listed by CITES (Cardador et al., 2017; Elmqvist
et al., 2010). Other regions, such as the European Union (EU), enforced
similar restrictions to ban trade in wild birds a few years later, in 2005 (Car-
dador et al., 2017; Reino et al., 2017). Implementing unilateral trade bans by
major economies can effectively decrease the risk of global invasions (Reino
et al., 2017). However, other regions of the world still struggle with inade-
quate regulations that encourage the trade of alien vertebrates (Cardador
et al., 2017; Mogomotsi et al., 2022; Reino et al., 2017; van Wilgen
et al., 2010).

Fishes
Alien fish species are introduced mainly intentionally for angling, biological
control, aquaculture, or ornamental purposes. However, some species, such
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as the Asian fish topmouth gudgeon Pseudorasbora parva, have arrived unin-
tentionally to other regions (e.g., in Romania; Gozlan, 2002; Holcik, 1991).
Angling and ornamental aquaculture were the main reasons for deliberately
introducing fishes worldwide (Faulkner et al., 2020; Weyl et al., 2020). For
example, in South Africa and the UK, the common carp Cyprinus carpio and
rainbow trout Oncorhynchus mykiss were introduced and released in the wild
for recreational fishing (Ellender & Weyl, 2014; White et al., 2011). Other
examples are largemouth bass Micropterus salmoides in South Africa (Ellender
& Weyl, 2014) and European catfish Silurus glanis in the UK (White et al.,
2011). Other species have been introduced as food, such C. carpio in North
America (Fall et al., 2011), or biological control agents, such as mosquito-
fishes Gambusia affinis, guppies Poecilia reticulata, and goldfishes Carassius aur-
atus, in South Africa (van Rensburg et al., 2011) and Brazil (Rocha et al.,
2011). Carassius auratus, considered potentially the most invasive aquarium
fish species in the EU, has also been introduced in the UK for ornamental
purposes (Kalous et al., 2015; Patoka et al., 2017). Furthemore, many species
introduced for other uses have later become popular as ornamental (Weyl
et al., 2020), which has contributed to their spread.

Ornamental fishes are the most widely traded aquatic animals, with
approximately two billion living specimens being sold annually (Monticini,
2010). Freshwater fish are more readily available in pet stores and aquaria
than marine fish, probably because freshwater aquaria are easier to maintain,
feeding requirements are less demanding, and freshwater fish are usually sold
at a lower price (Papavlasopoulou et al., 2013). Gertzen et al. (2008) found
that around 10,000 fishes were released yearly by pet owners in Montreal
(Canada). The main reasons cited were aggressive behavior, fish illness, rapid
reproduction, large size, owner becoming bored of fishes, or moving.

Amphibians
Amphibians are a group of vertebrates whose trade has increased significantly
in recent years (Gippet & Bertelsmeier, 2021; Mantintsilili et al., 2022;
Mohanty & Measey, 2019; van Wilgen et al., 2010). Approximately half
of the introduced amphibian species are frogs and salamander-like amphib-
ians (Tingley et al., 2010). Frogs dominate most amphibian introduction
pathways, be it intentional for biological control, food, and feed, or uninten-
tional by transport cargo and plant nurseries. However, the pet trade is
currently the most relevant introduction pathway for all taxa in North
America and Europe (Kraus, 2009). The body size of amphibians is likely
to affect the pathway through which they are introduced (Tingley et al.,
2010). Large species are more likely to be intentionally introduced than to
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arrive as stowaways (Mohanty &Measey, 2019), and they are thus also more
likely to be released into the wild (Stringham & Lockwood, 2018). Further-
more, species that are more commonly found in their native range, with
sizable larval offspring and large clutch sizes, are also more likely to be traded
(Allen et al., 2017; Mohanty & Measey, 2019). Although amphibians are
often perceived as difficult to breed and keep in captivity (Measey et al.,
2017), the opportunity to observe behavior not seen in wild amphibians,
such as feeding or movement, attracts people to purchase them as pets
(Measey et al., 2019).

Some examples of invasive species that have emerged from the pet trade
include the North American bullfrog Lithobates catesbeianus in Europe (Pas-
mans et al., 2017) and the cane toad Rhinella marina, which has been widely
introduced in many regions worldwide (Measey et al., 2019). From a global
perspective, amphibians are not currently the most traded pets (Gippet &
Bertelsmeier, 2021), but the desire to have an amphibian as a pet is growing
(Measey et al., 2019). As a result, the trade in amphibians is likely yet to reach
its peak (Kopecký et al., 2016).

Reptiles
Reptiles, such as lizards and snakes, are sometimes unintentionally intro-
duced as stowaways, e.g., the brahminy blind snake Indotyphlops braminus
(van Rensburg et al., 2011). Others, such as chelonians (turtles and tortoises),
e.g., Trachemys scripta (Fonseca et al., 2019), or geckos, e.g., tropical the
house gecko Hemidactylus mabouia (Perella & Behm, 2020), are primarily
brought in through the pet trade (Kraus, 2009; Mali et al., 2014; Perella
& Behm, 2020; Silva-Rocha et al., 2018; Zhou & Jiang, 2008). Many rep-
tiles often include insects in their diets. However, unlike frogs, reptiles were
not usually introduced for biological control (Kraus, 2009). As with amphib-
ians, traded reptiles are often large in size and have fast life-history traits, such
as larger larval offspring and recurring clutches (Allen et al., 2017; Mohanty
& Measey, 2019). This makes them more likely to be released or escape into
the wild, leading to their proliferation in new environments (Stringham &
Lockwood, 2018).

The demand for pet reptiles is projected to grow, mainly through online
markets and pet stores (Mantintsilili et al., 2022; Mohanty & Measey, 2019).
This increase in demand may lead to a higher risk of invasions due to greater
propagule pressure (Gippet & Bertelsmeier, 2021; Measey et al., 2017; van
Wilgen et al., 2010). As a result of trade in goods and/or pets, species such as
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the green anole Anolis carolinensis and brown anole Anolis sagrei have become
widespread invaders in many regions (Huang et al., 2008; Kraus, 2009;
Makihara et al., 2004; Mantintsilili et al., 2022), causing severe impacts on
native insect populations, such as in Japan (Chapter 8). A recent study con-
ducted in South Africa revealed that reptile species with low prices and high
climatic suitability tend to have a higher volume of individuals for sale, pre-
senting a significant risk of invasion (Mantintsilili et al., 2022). The authors
found that snakes were the most popular pet reptile species, followed by liz-
ards, turtles, and tortoises, including both CITES-listed endangered species
and problematic invasive reptiles, such as the red-eared slider Trachemys
scripta subsp. elegans.

The extremely popular red-eared slider occurs as an alien in many re-
gions worldwide, such as Brazil (Fonseca et al., 2019; Silva-Soares et al.,
2011), Bermuda (Outerbridge, 2008), Chile (N�u~nez et al., 2002), China
(Zhang et al., 2020), Philippines (Diesmos et al., 2008), South Africa (Man-
tintsilili et al., 2022), and many countries of Europe (Kraus, 2009). Many
red-eared sliders escaped from aquaculture farms or were released as un-
wanted pets by irresponsible owners (Chen, 2006; Kikillus et al., 2012).
The case of China is particularly intriguing, where red-eared slider turtles
are being introduced to meet the demand for food and traditional Chinese
medicine, and not just as pets, with 50 million individuals being traded per
year (Zhang et al., 2020).

Birds
Almost half of bird species are exploited by humans, mainly as pets but also
for food, sport, ornamentation, and traditional medicine, with a third of
them being traded internationally (BirdLife International, 2022). There is
evidence that the probability of invasion of birds in a region is related to
the number of imported birds (Reino et al., 2017). For example, the results
fromRussello et al. (2008) suggest that propagule pressure from the pet trade
was the main factor contributing to the establishment of existing monk par-
akeet Myiopsitta monachus populations in the USA. Different studies have
shown that most birds marketed and sold in pet stores are alien (Shivambu,
T. C. et al., 2022; Vall-llosera & Cassey, 2017). Individuals of the orders
Psittaciformes and Passeriformes are among the most commonly traded,
many of which became invasive (Bush et al., 2014; Gippet & Bertelsmeier,
2021; Shivambu, T. C. et al., 2022; Su et al., 2016; Tella et al., 2014). For
example, most frequently, the birds found in South African pet stores belong
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to the Psittaculidae and Estrildidae families (Shivambu, T. C. et al., 2022).
According to these authors, 14 of the avian species traded have established
outside captivity, of which three are registered as invasive. Similarly, parrots
and songbirds were the most frequently traded birds in Australia, Portugal,
Spain, and Taiwan (Su et al., 2022).

Approximately 4000 bird species captured in the wild and bred in
captivity are sold as pets, making them one of the most traded groups of an-
imals (Ribeiro et al., 2019). Surprisingly, the most successful invaders are not
necessarily the most common caged species but rather those captured from
the wild and directly traded in the pet market (Carrete & Tella, 2008). These
species may be popular among purchasers for various reasons, such as match-
ing their preferences regarding bird temperament, rarity, popularity, price,
and singing ability (Ribeiro et al., 2019). Similarly, other main purchase mo-
tives include contests, investment, and socio-cultural factors. The bird trade
is expected to grow in many countries, driven by the increasing demand for
rare wild-caught birds rather than captive-bred birds (Ribeiro et al., 2019).
Additionally, factors such as globalization and habitat degradation may facil-
itate the establishment of escaped or released captive birds (Nijman et al.,
2022).

Mammals
Mammals have been intentionally introduced for hunting, ornamental pur-
poses, food, fur, pest control, pets, or wool (Clout & Russell, 2008; da Rosa
et al., 2017; Long, 2003). The pet trade is the most important pathway for
the deliberate introduction of small mammals (Shivambu, Shivambu,
Downs, et al., 2020, Shivambu, N. et al., 2022). Previous research indicates
that rodents are becoming the most popular pets worldwide (Ellis & Mori,
2001; Grant et al., 2017). For example, two of the most common species for
sale in pet stores of South Africa are the Norwegian rats Rattus norvegicus and
house mice Mus musculus (Shivambu, N. et al., 2022). Nonetheless, species
such as rats and shrews have been historically introduced accidently as con-
taminants in goods or as stowaways on vehicles such as ships or trucks
(Chapter 8).

Small mammals are not only sold as pets but also used to feed other pets
because they are generally cheap (Shivambu, N. et al., 2022) and easy to
maintain (Cooper & Williams, 2014; Kanagarajah et al., 2018; Maligana
et al., 2020). Some of these species may be released or escape for reasons
such as aggressive behavior, fear of disease, no longer being desired as
pets, or loss of interest by their owners (Padilla & Williams, 2004; Reaser
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&Meyers, 2007; Stringham & Lockwood, 2018). In many regions, feral cats
Felis catus were introduced to control the indiscriminate spread of small
mammals (Chapter 8). However, cats are also known to eat insects (Medina
& Nogales, 2009; Peck et al., 2008; Woolley et al., 2020).

Conclusions

At present, global change and the movement of species around the
world make it challenging to achieve a balance between human activities
and insect conservation. Globalization and trade, combined with gaps in
policy, are likely to lead to new biological invasions promoted by the inten-
tional and unintentional introductions of invasive alien species.

Firstly, social and cultural factors and a preference for wild-caught over
captive-bred species may determine the future direction of wildlife trade.
For example, demand for certain birds may be influenced by their popularity
and scarcity (Ribeiro et al., 2019). Moreover, illegal trade is expected to in-
crease due to the growing popularity of certain groups of species, such as am-
phibians, birds, and reptiles (Mantintsilili et al., 2022; Mohanty & Measey,
2019; Ribeiro et al., 2019). According to experts, trade of these taxa is
mainly sustained by consumers who are from higher socio-economic and
educational backgrounds (Ribeiro et al., 2019). Thus, increasing knowledge
and public awareness may help reduce trade of invasive species and improve
the management of those already present.

Second, differences in policies between countries complicate interna-
tional regulations. Therefore, biosecurity policies must be strengthened in
many countries (Mantintsilili et al., 2022; Stringham & Lockwood, 2018),
especially those with the most intensive movement of people and exchange
of goods (L€ahteenm€aki-Uutela et al., 2018). Invasion costs are often consid-
ered an unintended side effect of international trade (Perrings et al., 2005). A
critical step is to direct more resources to combat invasive species at the initial
stage of introduction or even explore new trade instruments (e.g., tariffs or
tradable risk permits) to prevent the entry of potentially problematic species
(Westphal et al., 2008) and confront traders with the costs of their actions to
take appropriate biosecurity measures (Perrings et al., 2005).

Third, although CITES records of legal and illegal trade exist, data on
illegally introduced species are generally scarce (Harfoot et al., 2018). There-
fore, more resources should be invested in preventing and prosecuting illegal
trade and establishing management measures and protocols to address the
risks of invasive species introductions that are still being traded (Cardador
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et al., 2017; Reino et al., 2017). The case of the USA and the EU is note-
worthy, where the application of trade bans has led to the emergence of new
trade routes, smaller in scale, driven by fluctuations in demand, supply, and
the availability of transportation infrastructure, and entailing less developed
and controlled countries (Chapman et al., 2017; Early et al., 2016). The shift
in trade from developed countries, equipped with ample resources for con-
trolling invasive species, to developing countries, less equipped to mitigate
invasions, could exacerbate the probability of invasions and their impacts
on native species (Cardador et al., 2017; Chapman et al., 2017; Reino
et al., 2017). For example, species with high invasive potential are favored
in the wildlife trade, and therefore, regulation of the trade is crucial to pre-
vent future invasions (Street et al., 2023). To address this issue, it is crucial to
revise existing pet trade regulations and impose more restrictions on poten-
tially invasive species.

In brief, we live on a multiconnected planet. This favors the intentional
and unintentional introduction of alien species, of which a portion can result
in problematic invaders and affect insect conservation (see Chapters 5e9).
Establishing measures that regulate the movement of species and ban the
commerce of invasive species is extremely necessary. It is also essential to
educate the general public so that they are well informed and can make
appropriate decisions as consumers and in accordance with the protection
of the environment.
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Alien plants are ubiquitous

Although plants always have naturally redistributed around the globe,
the increased temporal and spatial mobility of humans has resulted in an
extraordinary increase in the rate of plant movements (Vitousek, Mooney,
et al., 1997). Additionally, wherever we have purposefully landscaped our
surroundings, we have heavily favored alien species of plants (Lambdon
et al., 2008; McKinney, 2001, 2004; Reichard &White, 2001; van Kleunen
et al., 2015). Thousands of plant species have been moved from their parent
continent either purposely for agriculture, lumber production, horticulture,
and restoration plantings or accidently as hitchhikers. An estimated 13,168
plant species (about 3.9% of global vascular flora) have been introduced
beyond their native ranges as a result of human activity (van Kleunen
et al., 2015). Although some of these species have joined native plant com-
munities without substantial changes to species abundance and composition,
many others have become invasive, outcompeting native plant communities
(Dehnen-Schmutz & Touza, 2008; Richardson & Rejm�anek, 2011). For
example, at least 3300 introduced plant species have become invasive in
North America (Qian & Ricklefs, 2006), 300 in Europe (Keller et al.,
2011), and 2700 in Australia (Webber et al., 2014), and, by now, all areas
in the world are invaded by at least one alien plant species (Nuwer, 2014;
Py�sek et al., 2020). Despite management efforts, invasive plants are
increasing in abundance, especially in protected areas (Py�sek et al., 2020).
Many native ecosystems with diverse species of plants and animals are rapidly
being converted into novel assemblages, creating one of the most ubiquitous
threats to biodiversity today (Dolan et al., 2011; Johnson, 2007; Radeloff
et al., 2015).

In horticultural and ecological circles, concern often has focused only on
alien plants that are invasive, assuming that if a plant is not invasive, it does
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not cause ecological problems. This assumption has led land managers and
the public to consider these species as acceptable choices for landscaping,
agroforestry, and restoration. However, plants represent the first trophic
level wherever they occur. In the United States of America (USA) alone,
approximately 54.6 million hectares are in residential landscapes dominated
by ornamental plants (Nickerson et al., 2007). If ornamental plants do not
provide appropriate resources for herbivores, large areas may no longer serve
as habitat. In addition, ornamental plants could become invasive in the
future. Many invasive plants experienced a lag phase for decades or more
before they began to spread or were recognized as invasive (Crooks,
2005; Essl et al., 2011). For example, at least 118 species of alien trees
have naturalized in Puerto Rico and compete with native trees in natural
stands (Francis & Liogier, 1991). Other ornamental plants, such as crepe
myrtle (Lagerstroemia indica), Callery pear (Pyrus calleryana), burning bush
(Euonymus alatus), and cool-season European turf grasses, often dominate
managed landscapes in North America.

In many ecosystems, alien flora can be substantial components of floral di-
versity. By extrapolating data from USDA Forest Service inventory plots,
Miller et al. (2008) estimated that 9% of forests in the southeastern USA are
covered by just 33 common invasive plant species. In some island systems,
alien plants now represent 50%e70% of the species in the ecosystem (Vitou-
sek, D’Antonio et al., 1997). Yet, relatively few species are needed to alter an
ecosystem. For example, cheatgrass (Bromus tectorum) has replaced sagebrush
communities and the associated insects throughout more than 210,000 km2

in the western USA (Bradley et al., 2018). Species such as kudzu (Pueraria
montana), various privets (Ligustrum spp.), Amur and Tatarian honeysuckle
(Lonicera maackii and Lonicera tatarica), common reed (Phragmites australis),
Himalayan blackberry (Rubus armeniacus), and common buckthorn (Rhamnus
cathartica) in North America provide additional examples of how single species
can transform diverse native plant communities into near monocultures of
invasive plants over millions of hectares. These alien plants dominate vegeta-
tive biomass and reduce taxonomic, functional, and phylogenetic diversity,
further exacerbating their effects (reviewed in Sofaer et al., 2018). Plant inva-
sions can alternative plant communities so thoroughly that arthropod popu-
lations dependent upon those communities can be devastated.

Alien plants affect arthropods

Every literature review of the subject to date has concluded that, more
often than not, alien plants negatively influence arthropods in some way
(e.g., richness, abundance) (Bezemer et al., 2014; Litt et al., 2014; Tallamy
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et al., 2021; van Hengstum et al., 2014; Yoon & Read, 2016). However,
arthropod responses to alien plants are not uniform, with some studies
showing no effect and a few showing positive influences. Not surprisingly,
the equivocal nature of these responses has led to controversy over how
much alien plants actually affect arthropod populations. When comparing
the results of studies examining the influences of alien plants on arthropods,
an important source of variation is the functional or feeding group consid-
ered and the degree of association with native plants. Arthropods are associ-
ated with plants in a number of contexts: as folivores, wood eaters,
detritivores, pollinators, frugivores, and seed eaters; as herbivores with chew-
ing or sucking mouthparts; as species that use plants as a structure for foraging
or as cover; and as host-plant specialists or generalists. These contexts are not
equivalent and cannot be lumped when reporting results. In this chapter, we
explore how the changes associated with invasions by alien plants influence
different functional groups of arthropods, with concomitant effects on com-
munities and ecosystems. We focus mainly on insects, but also include some
insights about noninsect taxa (e.g., spiders [Araneae]).

Effects on herbivorous insects
The degree to which widespread alien plants contribute to declines of her-
bivorous insects is a function of how well such plants meet the nutritional
needs of these insects. Decades of research have demonstrated that the
vast majority of phytophagous insects are behaviorally and physiologically
restricted to the few native plant lineages for which they have developed
specialized adaptations to circumvent plant defenses (Ehrlich & Raven,
1964; Forister et al., 2015; Mitter et al., 1988; Strong et al., 1984; Tallamy
et al., 2021). When native host plants are displaced by alien species,
phytophagous insects typically do not recognize the novel host for feeding
or oviposition, or they may be unable to overcome novel plant defenses
(Bezemer et al., 2014; Litt et al., 2014; Tallamy, 2004; van Hengstum
et al., 2014; Wagner & Van Driesche, 2010).

All herbivorous insects do not interact with plants in the same way. In-
sects with chewing (mandibulate) mouthparts (e.g., Lepidoptera) typically
are more susceptible to defensive compounds in leaf vacuoles than are insects
with sucking (haustellate) mouthparts (e.g., Hemiptera). Sucking insects tap
into poorly defended xylem or phloem fluids and may be more likely to find
alien plants to be acceptable hosts than chewing insects (Burghardt & Tall-
amy, 2013), although this idea has not been formally examined. If insect
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herbivores that chew are less able to consume novel plants, there is a reason
for concern when alien plants replace native hosts, given that there are more
than 4.5 times as many mandibulate insect herbivores as haustellate species
(Tallamy et al., 2021). Leaf mining and galling arthropods also have highly
specialized relationships with plants (Forister et al., 2015) and, thus, may be
even more negatively affected by novel hosts (Burghardt & Tallamy, 2013;
L�opez-N�u~nez et al., 2017).

Because plants in closely related lineages often share defensive chemicals
and phenology, herbivorous insects that specialize on a particular plant
group are more likely to accept alien congeners or con-familial species
within that lineage than species that do not share an evolutionary history
with native host plants (Burghardt et al., 2010; Burghardt & Tallamy,
2013; Connor et al., 1980; Hill & Kotanen, 2009; Lombardero et al.,
2012; Pearse & Altermatt, 2013). However, the ability to accept related alien
plants is not universal. When comparing insect use of congeneric pairings in
a common garden experiment in Delaware, USA, alien congeners of native
plants reduced insect abundance and richness by 68%, on average (Burghardt
et al., 2010; Burghardt & Tallamy, 2013).

Herbivorous insects with a narrow diet breadth are less likely to develop
on evolutionarily novel plants than insects with broader diets (Bertheau
et al., 2010; Pearse, 2011). More insect species are host-plant specialists
than generalists, with 76% of species associating with just one family of plant
hosts (Forister et al., 2015). But, even when we focus only on populations of
generalist herbivorous insects, species richness and abundance of these taxa
are substantially lower on alien plants compared to native plants (Ballard
et al., 2013). In addition, generalist herbivores often are locally specialized
on particular plant lineages and thus may act more like specialists than we
would expect based on host lists accumulated across their range (Fox &
Morrow, 1981; Tallamy et al., 2010).

Of the insect taxa in global decline (Dirzo et al., 2014; Fox et al., 2014),
Lepidoptera is by far the best studied for diet breadth. Globally, nearly 70%
of caterpillar species develop on a single plant family (Forister et al., 2015).
Novotny et al. (2004) determined that the average caterpillar species in New
Guinea rainforests feeds on no more than three plant species, with over 90%
of these caterpillars concentrated on a single plant host (see Novotny et al.,
2002). Thus, the displacement of native plants by alien taxa is likely to
contribute to declines in Lepidoptera (Ballard et al., 2013; Burghardt
et al., 2010). Richard et al. (2019), for example, found that invaded hedge-
rows in the mid-Atlantic states of the USA supported 68% fewer
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Lepidoptera species, 90% fewer caterpillars, and 96% less caterpillar biomass
when compared to uninvaded hedgerows.

Another important factor is that native plants differ greatly in their ability
to host phytophagous insects (Narango et al., 2020; Tallamy & Shropshire,
2009). Studies comparing alien plants to native plants that support very few
phytophagous insects are less likely to find differences in phytophagous in-
sect communities than studies comparing alien plants to native plants that
host dozens of species. In the mid-Atlantic region of North America, for
example, oaks (Quercus spp.) host 557 Lepidoptera species, whereas tulip
trees (Liriodendron tulipifera) host only 21 species and yellowwood (Cladrastis
kentukea) does not serve as host for any Lepidoptera (Tallamy & Shropshire,
2009). Comparing the magnitude of changes resulting from plant invasions
in these disparate communities can lead to inappropriate inferences.

Although both woody and herbaceous alien plants can decrease the
overall abundance of herbivorous insects, woody plants have stronger effects
(Daehler, 2005; van Hengstum et al., 2014). Native woody plants generally
support more species of phytophagous insects (Tallamy & Shropshire, 2009).
Herbivorous insects that feed on well-defended plant tissues (e.g., leaves,
buds, seeds) are less likely to be able to include alien plants in their diets
than insects that use undefended tissues (e.g., fruits, nectar, wood). Although
this hypothesis has never been tested formally, several species of introduced
wood borers (e.g., emerald ash borer: Agrilus planipennis, sirex woodwasp:
Sirex noctilio, Asian long-horned beetle: Anoplophora glabripennis) and bark
beetles (Coleoptera: Scolytinae) have easily included North American trees
in their diets (Baranchikov et al., 2008; Eskalen et al., 2013; Fraedrich et al.,
2008; Haack et al., 2010; Paap et al., 2018).

Effects on pollinating insects
Alien plants often are perceived as valuable to pollinators. However, alien
plants negatively affect pollinators when they eliminate or reduce the abun-
dance of the required food plants (Martin, 1999; Py�sek & Py�sek, 1995; Stout
&Morales, 2009). Of more than 4000 species of native bees in North America,
over one-third are highly specialized on one plant genus and can only rear
young on the pollen produced bymembers of that genus (Cane, 2021; Fowler,
2020a, 2020b; Fowler & Droege, 2020). Thus, where alien plants replace
native flower resources in natural areas or are favored in managed landscapes,
specialist bees are unlikely to reproduce at those sites.

Native bees do visit some invasive plants, particularly when their bloom
time fills a phenological gap in native flower resources (reviewed by Stout &
Morales, 2009). However, dominance by a single plant species has
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detrimental effects on bees and butterflies if their active flying and foraging
seasons occur outside the periods of these blooms (Fowler, 2020a, 2020b;
Fowler & Droege, 2020). This argument also holds for trees, such as Euca-
lyptus species, that are widely planted in shade coffee and forestry agroeco-
systems around the world (Tallamy, pers. obs.).

In general, we know little about which insects will accept novel hosts
(Pearse et al., 2013) and there is a danger of overestimating the ability of pol-
linators to use alien plants and underestimating the negative effects of plant
invasions on native pollinators. For example, in one area of northern Cali-
fornia, Graves and Shapiro (2003) found that 34% of butterfly species
oviposit or feed on alien plant hosts. Yet, the butterfly species in this region
that cannot make this shift could suffer population declines due to encroach-
ment by alien plants.

Effects on predatory arthropods
Predatory arthropod communities (which include predatory insects, as well
as noninsect taxa such as spiders, harvestmen [Opiliones], and mites [Acari])
exhibit variation in their responses to plant invasion (reviewed in Litt et al.,
2014). Predicting how predatory arthropods respond to plant invasion re-
quires a complex understanding of a taxon’s prey preferences, foraging
behavior, interactions among other predators within the same or adjacent
trophic levels, as well as how the taxon’s prey may respond to the invasion
of alien plants (Harvey et al., 2010). As such, there is a need for exploring
multitrophic interactions (L�opez-N�u~nez et al., 2017) that identify changes
in predatoreprey dynamics in landscapes where alien plants are prevalent.

Although diet breadth in this functional group is not as narrow as it is for
herbivores, predatory arthropods generally are assumed to be prey limited
(Foelix, 2010; Price et al., 2011). As such, plant invasion may exhibit
bottom-up influences on predatory arthropods through changes in the pres-
ence, abundance, or availability of prey. Several studies highlight this relation-
ship where changes in prey density or activity result in concomitant effects on
densities of predatory arthropods (Bassett et al., 2012; de Groot et al., 2007;
Emery & Doran, 2013; Ernst & Cappuccino, 2005; Gerber et al., 2008;
Lau, 2013; Samways et al., 1996; �Strobl et al., 2019; Tang et al., 2012;
Topp et al., 2008). When presented with limited prey in an invaded land-
scape, predator assemblages may reduce diet breadth (Carvalheiro et al.,
2010; Hansen et al., 2009; Mitchell et al., 2021) or switch to a more abundant
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prey source (Gratton & Denno, 2005; Kappes et al., 2007; Schreck et al.,
2013). In a Mid-Atlantic forest understory dominated by garlic mustard
(Alliaria petiolata), deHart and Strand (2012) documented that wolf spiders
(Araneae: Lycosidae) and harvestmen shifted their prey preferences from
springtails (Collembola) that were less abundant in invaded forests to caterpil-
lars that fed on garlic mustard. However, wolf spiders also consumed ants
(Hymenoptera: Formicidae), harvestmen, and smaller instars of their own spe-
cies, requiring a shift to intraguild predation and cannibalism to supplement
their diet (deHart & Strand, 2012).

Changes in vegetation structure created by plant invasion also may influ-
ence predatory arthropods through changes in foraging behavior, move-
ment, or microclimate. Increased litter loads or ground cover following
plant invasion may improve environmental conditions for some predatory
arthropods (Ellis et al., 2000; Lindsay & French, 2006; Pehle & Schirmel,
2015; Schirmel, 2020; Wolkovich et al., 2009) or increase prey availability
(Ralston et al., 2017), but also may reduce mobility when foraging (Bultman
& DeWitt, 2008; Crist et al., 2006; Samways et al., 1996; Wolkovich et al.,
2009; Wu et al., 2009). The direction and magnitude of these effects depend
on the foraging strategy of the predator and the structural changes created by
the alien plant. Simao et al. (2010) hypothesized that the structural simplicity
in monocultures of Japanese stiltgrass (Microstegium vimineum) reduced web-
building structure for spiders. In contrast, structural features created by
spotted knapweed (Centaurea maculosa) in the Great Plains of North America
were associated with increased densities of web-building spiders, as well as
increased prey capture (Pearson, 2009).

Parasitoids inhabit and kill their hosts to complete their life cycle. These
species have more specialized diets than other predatory arthropods and
likely exhibit a bottom-up response to plant invasion (Harvey, 2005; Price
et al., 2011). Like predatory arthropods, the abundance and diversity of par-
asitoids decrease in invaded landscapes, following decreased availability of
prey (L�opez-N�u~nez et al., 2017; Simao et al., 2010). During development,
larval parasitoids may be affected by novel chemicals consumed by hosts,
leading to delayed development, reduced fecundity, or survival (Fortuna
et al., 2012; Harvey & Fortuna, 2012; Harvey & Gols, 2011; Ode, 2006).
Fortuna et al. (2012) documented that caterpillars performed poorly when
they consumed an alien congener, leading to longer development times
and lower survival for the associated parasitoid. However, parasitoids that
infested the caterpillar during its pupal stage were not affected (Fortuna
et al., 2012).
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Effects on detritivorous insects
Detritivore is a relatively broad term that includes organisms that consume
dead plant material or microorganisms (i.e., bacteria and fungi) associated
with detritus (Brussaard et al., 1997; Clarholm, 1985). If alien plants are un-
recognized or unconsumed by plant-feeding insects, alien plant biomass can
accumulate, presenting detritivores with an abundant but novel resource.

When presented with increased litter loads from alien plants, detritivores
generally increase in abundance (67% of studies reviewed in Litt et al., 2014).
Past studies document higher decomposition rates in litter from alien plants
compared to native vegetation (Bassett et al., 2010; Ehrenfeld, 2003; Huen-
neke et al., 1990; Mayer et al., 2005; Standish, 2004; Ulyshen et al., 2020;
Vitousek, 1990; Woodworth et al., 2020), which stem from changes in litter
characteristics. Woodworth et al. (2020) documented differences in litter
chemistry between native and alien plants, where alien litter had more nitro-
gen and less carbon, which could benefit decomposers. Increased litter cover
can alter habitat conditions through changes in soil moisture (Lindsay &
French, 2006; Wolkovich, 2010), temperature (Pehle & Schirmel, 2015;
Vilardo et al., 2018), and pH (Alerding & Hunter, 2013; McGrath & Bink-
ley, 2009). In addition, alien plants may change the timing of the detrital
supply. For example, purple loosestrife (Lythrum salicaria) decomposes earlier
in North America compared to native sedges and cattails (Grout et al., 1997),
potentially reducing available litter loads for detritivores in the spring.
Numerous information gaps remain in understanding the implications of
alien plants on decomposers, including changes in rates of decomposition
and ecosystem function (Prescott & Zukswert, 2016; Zhang et al., 2019).
Although beneficial in the short-term, labile litter loads from invasive plants
can result in rapid declines in native detritivores, which may be more accus-
tomed to more recalcitrant but stable litter loads (Blossey et al., 2001;
Woodworth et al., 2020).

Although the densities of detritivores can be higher in invaded plant
communities (Litt et al., 2014), abundance may not correlate with diversity.
As we discuss for herbivores above, novel plant litter resources can favor the
colonization of generalists (Ellis et al., 2000; Gerg�ocs & Hufnagel, 2016; St.
John et al., 2011). This is especially true in situations where litter loads facil-
itate the dominance of alien isopods (Isopoda) and other detritivores that in-
crease mineralization rates or decomposition (David & Handa, 2010; Ellis
et al., 2000; Hoback et al., 2020; Mitchell & Litt, 2016; Vilardo et al.,
2018). Springtails and oribatid mites (Acari: Oribatida) are considered
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powerful drivers in litter decomposition (Perez et al., 2013; Seastedt, 1984)
and respond quickly to changes in soil chemistry and litter quality (Alerding
& Hunter, 2013; Gerg�ocs & Hufnagel, 2016). As such, these taxa may serve
as indicators for changes in ecosystem services following plant invasion.

Effects on ants
Ants often are separated from other functional groups due to the versatility
in their diet - most taxa encountered at the surface level are omnivorous
(Brussaard et al., 1997; Folgarait, 1998; Whitfield & Purcell, 2021). As
such, ant responses to plant invasion are highly variable; in a literature re-
view, Litt et al. (2014) summarized a decline in ant richness and abundance
in 47% of studies and an increase in only 7%. Invasive plants may alter vege-
tation structure, which can impede ant movement or increase foraging bouts
(Kajzer-Bonk et al., 2016; Lenda et al., 2013; Wolkovich et al., 2009).

Ants can benefit from alien plants if ants recognize these novel seeds as a
food source. Predation on seeds of alien plants by native ants varies. For
example, multiple species of New World harvester ants (Pogonomyrmex spp.)
avoid alien grass seeds (e.g., B. tectorum) over native seeds in both Patagonian
Steppe and sagebrush steppe communities (Aput et al., 2019; Ostoja et al.,
2009; Robertson & Robertson, 2020; Schmasow&Robertson, 2016). How-
ever, in coastal sage scrub communities, harvester ants prefer seeds of alien
stork’s-bill (Erodium cicutarium) over native con-familials (Briggs & Redak,
2016). On the other hand, ants may facilitate seed dispersal of alien plants
(Pearson et al., 2018, but see Pearson et al., 2014). Seed morphology can
help provide insights into dispersal and invasion success. Most native plants
dispersed by ants produce seeds with elaiosomes - fleshy, lipid-rich structures
exterior to seeds that serve as an attractant (Rico-Gray & Oliveira, 2007). This
pattern also holds for alien plants, as has been shown for species from genera
such as Acacia (Gibson et al., 2011; Marchante et al., 2010), Carduus (Alba-
Lynn & Henk, 2010; Ortiz et al., 2021; Pearson et al., 2014; Pirk & Lopez
de Casenave, 2017), Centaurea (Jensen & Six, 2006), Cirsium (Alba-Lynn &
Henk, 2010), and Euphorbia (Berg-Binder & Suarez, 2012). Seed size and
shape also are important. Small, narrow seeds and seeds dispersed by wind
are commonly accepted by ants (Loesberg & Meyer, 2021; Penn & Crist,
2018; Wandrag et al., 2021). Seeds with awns can impede transport; ants in
Australia dispersed invasive grass seeds that lacked awns and readily accepted
native grass seeds when awns were removed (Wandrag et al., 2021).
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Plant invasion also may affect ants indirectly through prey responses,
especially where ants use other insects for honeydew. Kajzer-Bonk et al.
(2016) reported that ant densities in Southern Poland decreased by more
than 50% in fields invaded by alien goldenrods (Solidago spp.), which was
correlated with declines in specialist caterpillars and their native host plants.
In contrast, Lescano and Farji-Brener (2011) documented increased activity
of Brachymyrmex and Dorymyrmex ants associated with increased densities of
aphids (Hemiptera: Aphidoidea) on alien thistles (Carduus thoermeri andOno-
pordum acanthium) in the Patagonian Steppe. Lescano et al. (2012) also
explored anteaphid relationships, but included an additional parameter -
refuse dumps of leaf-cutting ants (Acromyrmex lobicornis), which increased
thistle biomass and aphid densities, leading to increased ant activity. In this
scenario, the activity of native ants could improve conditions for invasive
plants to grow and develop, leading to concerns about ants facilitating inva-
sion success.

Given that ants represent an ecologically diverse and important taxo-
nomic group, research focused on a mechanistic understanding of plant in-
vasion and ant responses can yield insights about the potential success of
restoration efforts. This is especially true in scenarios where ants contribute
to the spread of a novel plant (Briggs & Redak, 2016; Gibson et al., 2011;
Ortiz et al., 2021; Pirk & Lopez de Casenave, 2017) or where ants impede
restoration through the predation of native seeds (Linabury et al., 2019;
MacDougall & Wilson, 2007; Mitchell et al., 2021; Ostoja et al., 2009).

Effects on community composition and food webs
The dominance of alien plants and the concurrent loss of native plant hosts
can lead to local extirpation of arthropods, with concomitant changes in the
composition of the arthropod community, food webs, and ecosystem func-
tion (Bezemer et al., 2014; Chew, 1981; Gratton & Denno, 2006; Mitchell,
2019; Narango et al., 2017; Richard et al., 2019; Sunny et al., 2015). These
changes are further complicated because many arthropods perform multiple
roles (e.g., larvae could be herbivores, whereas adults are pollinators).

Any reduction in the abundance and diversity of insect herbivores is
likely to cause a subsequent reduction in the insect predators and parasitoids
of those herbivores. Although the logic here is irrefutable and has some sup-
port (Harvey, 2005; Narango et al., 2018), relatively few studies have
attempted to measure natural enemy reductions where invasive plants are
common. Predaceous arthropods decreased in only 44% of the studies
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examined by Litt et al. (2014), which could reflect changes in the typical
prey of spiders, the most abundant arthropod predators in terrestrial ecosys-
tems. Web-spinning spiders are generalist predators that target flying insects,
which are more often produced in detritus than on living plants. In contrast,
the vast majority of parasitoids are highly specialized on particular host lin-
eages (Forbes et al., 2018; Smith et al., 2006; Vinson, 1998); declines in these
native plants could lead to more substantial effects.

Arthropods also comprise a large and important part of the diet of many
animal species, such that the influences of alien plants can be very wide-
reaching. For example, Tallamy and Shriver (2021) hypothesized a link be-
tween large-scale decreases in bird populations and declines in insects, in part
because of the increased dominance of alien and ornamental plants. Specif-
ically, they demonstrated substantial declines in population size for bird spe-
cies that rely on insects in their diet for some part of their life history
(Tallamy & Shriver, 2021).

In invaded landscapes, detritivores may supplant herbivores as the domi-
nant functional group in invertebrate communities. Redirecting energy
from living plants (“green food web”) to detritus (“brown food web”)
can have profound influences on trophic dynamics (Gratton & Denno,
2006; Levin et al., 2006; McCary et al., 2016; Mitchell, 2019). Understand-
ing how arthropod food webs respond to changes in the litter may yield av-
enues for restoring ecosystem services lost following plant invasion.

Impacts through pests and diseases associated with
alien plants

Although biosecurity measures help reduce risks (Nahrung et al.,
2023), there are repeated examples of serious plant diseases and insect pests
accompanying the introduction of alien plants. These pathogens and pests,
in turn, directly alter the composition of native plant communities, with po-
tential implications for insects that depend on native plants. The horticultur-
al and agricultural plant trade has been a leading pathway for invasive pests
and pathogens (see Chapter 9). An early example was the introduction of the
chestnut blight (Cryphonectria parasitica) with the commercial sale of Chinese
chestnut (Castanea mollissima). Chestnut blight completely transformed >70
million km2 of eastern deciduous forests in North America by destroying
viable populations of the iconic American chestnut (Castanea dentata). The
functional loss of American chestnuts is believed to have resulted in the
complete extinction of five insect herbivores that specialized on Castanea
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(Wagner & Van Driesche, 2010). Although the effects of blight on nonspe-
cialist taxa are unknown, Castanea is a member of the Fagaceae, an extraor-
dinarily important source of nutrition for hundreds of species of insects
(Narango et al., 2020). As such, the loss of the American chestnut likely
negatively affected the abundance and diversity of forest insects throughout
the tree’s range. Similarly, the importation of Chinese (Ulmus parvifolia) and
Siberian elm (Ulmus pumila) as ornamental trees to Europe may have played
an important role in the introduction of Dutch elm disease, threeOphiostoma
fungal pathogens that have devastated native elms and the insects that
depend on them in European and North American forests and urban
plantings.

Other important examples include oaks in North America and Great
Britain, which currently are threatened by the introduction of several serious
diseases, including sudden oak death syndrome, bacterial leaf scorch, acute
oak decline, and oak wilt, all of which were introduced via nursery stock.
These diseases already have killed more than 1 million oaks in California
(Alexander & Swain, 2010). Any reduction in oak diversity or abundance
is concerning from a conservation perspective because oaks in North Amer-
ica host over 950 species of Lepidoptera (Shropshire & Tallamy, n.d.). These
Lepidoptera provide the primary source of nourishment for the nestlings of
96% of terrestrial bird species (Kennedy, 2019) and thus contribute more in-
sect energy to local food webs than any other plant genus in North America
(Narango et al., 2020).

In addition to plant diseases, alien plants can be sources of alien insects.
The viburnum leaf beetle (Pyrrhalta viburni) likely was imported to Canada
with ornamental European cranberry bushes (Viburnum opulus) (Becker,
1979). Hemlock woolly adelgid (Adelges tsugae) was imported with orna-
mental Japanese hemlocks and has completely destroyed most southern pop-
ulations of eastern hemlock (Tsuga canadensis) in North America along with
associated insect populations (Havill et al., 2014). The Japanese beetle (Popil-
lia japonica) is less destructive, but far more wide-ranging in terms of the
number of native plants it affects. Japanese beetles were introduced to North
America in soil surrounding imported Iris bulbs and this insect is now a pest
on more than 300 plant species (USDA, 2015), competing with native in-
sects requiring those resources.
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Conclusions

Although alien plants can provide ephemeral resources for some in-
sects (e.g., generalist pollinators, some generalist insect herbivores) (Rodrí-
guez et al., 2019), a review of the literature suggests that alien plants
typically have detrimental effects on native insect herbivores, as well as
the predators and parasitoids that depend on them (Narango et al., 2017;
Richard et al., 2019; Rodríguez, Cordero-Rivera et al., 2020; Rodríguez,
Novoa, et al., 2020). This is particularly true for specialist herbivores, espe-
cially caterpillar species, for which restricted host ranges are the norm. Detri-
tivores also can be negatively affected, particularly when novel
phytochemical defenses are retained in leaf litter for long periods. Although
many alien plants provide some ecological benefits, those benefits must be
weighed against the serious costs to pollination, food webs, nutrient recy-
cling, and other services to accurately determine the net effect of a plant in-
vasion on insect communities.

Arthropods fill diverse functional roles, and the changes resulting from
invasive plants and alien ornamentals that we describe here can have wide-
spread and compounding effects at the population, community, and
ecosystem levels. In many cases, the specific mechanisms driving the docu-
mented changes are still sizable information gaps, especially the implications
of alien plants on arthropod reproduction and survival, species interactions,
and trophic relationships. Fortunately, the negative impacts of alien plant in-
vasions on insect communities often are reversible (Braschi et al., 2021;
Maoela et al., 2016; Robertson et al., 2011); when invasive plants are
removed or controlled, the native trophic balance can return remarkably
quickly. Using native plants in landscaping and horticultural applications
has important conservation implications, even at small spatial scales.
Continuing to build our understanding about different functional groups
of arthropods can guide restoration and management efforts to mitigate
the loss of species and ecosystem function (see Chapter 10 for further details).
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Introduction

Insects are the most diverse animal group with a conservative estimate
of one million described species (about 60% of all animal species) and many
more yet undescribed species (estimated up to 5.5 million; Stork, 2018).
Their vital importance for ecosystem function and, ultimately, human
well-being has been well documented and much acclaimed (“the little
things that run the world”; Wilson, 1987); however, insects are still under-
appreciated by society, research, and politics. With “a million species under
threat of extinction” (IPBES, 2019) and at the brink of the “Sixth Mass
Extinction” (Barnosky et al., 2011), the so-called “insect decline” has
become a buzz topic in science and even more so in popular literature
and the media. Although there is mixed evidence and uncertainty on the
topic (van Klink et al., 2020; see also Chapter 3), it is safe to say that pop-
ulations of some insect species have disappeared around the world, across
diverse biomes. The reasons for these observed declines are only sometimes
identified at the local and regional scale; this is demonstrated and illustrated
for example by long lists of Red List species, even given the well-noted low
proportion of insect species assessed for the International Union for Conser-
vation of Nature (IUCN) Red List. It must be highlighted that while Red
Lists are available for some insect groups (e.g., almost all Odonata at the
global level; see Chapter 3), there is a remarkable gap and bias considering
the spectacular diversity of insects. However, the magnitude of driving fac-
tors, their interactions, and the relevance for specific insect groups at larger
or even the global scale are less well-known and under considerable debate
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(see Chapter 3). Hallmann et al. (2017), for example, reported a 76% decline
of flying insects biomass over 27 years in protected areas of Germany and
concluded: “There is an urgent need to uncover the causes of this decline, its
geographical extent, and to understand the ramifications of the decline for ecosystems
and ecosystem services.” There are, indeed, many factors contributing to the
observed insect decline, such as land-use change (loss and degradation of
natural habitats, intensified agriculture and forestry, fragmentation), eutro-
phication, pesticides, climate change, light pollution, and invasive alien
plants (see Chapters 3 and 5), but what is the impact of invasive alien insects
on insect decline?

The intentional and unintentional translocation of organisms by human
actions has become a fingerprint of the Anthropocene, the age of human
domination of planet Earth (see Chapter 1). Vascular plants prevail within
alien species databases, with some 14,000 established alien plant species
documented worldwide, approx. 4% of the global flora (Py�sek, Pergl,
et al., 2017). The “International Nonnative Insect Establishment Data” data-
base, freely available on Zenodo (Turner et al., 2021), covers different re-
gions of the world and currently includes a total of 7635 alien insect
species established in these regions, which is less than 0.8% of the global in-
sect diversity (Table 6.1). Coleoptera dominate with more than 2000 species

Table 6.1 Numbers of alien insect species recorded per
region extracted from the Zenodo database “International
Nonnative Insect Establishment Data.” The numbers
include updates of previously published inventories
delivered for Europe (Roques et al., 2010, 2016), New
Zealand (MacFarlane et al., 2010), Hawai’i and the United
States, and Canada (Yamanaka et al., 2015).
Region No. alien insect species

North America 3587
Hawaii 3094
New Zealand 1604
Europe 1524
Japan 506
Gal�apagos 456
aSouth Africa 330
Okinawa 330
Great Britain 249
Ogasawara 191
Korea 172
aData for South Africa according to Janion-Scheepers and Griffiths
(2020).
From the Zenodo database “International nonnative insect establishment
data”. (Accessed 1 August 2022).
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(Liebhold et al., 2021), followed by Hemiptera, Hymenoptera, Diptera, and
Lepidoptera (Mally et al., 2022), with the other insect orders accounting
each for less than 4% (Table 6.2). In Europe, alien Hemiptera are overrep-
resented (by almost three times) and alien Diptera underrepresented (by
more than a third), compared to their native species diversity (Roques,
2010). While the “International Nonnative Insect Establishment Data”
database is of high value for analysis, significant gaps remain regarding
geographical and taxonomic coverage.

Wagner and Van Driesche (2010) rank biological invasions as the second
most important threat (after habitat loss) to protected insects in the United
States of America, specifically the introduction of alien plants and subse-
quent loss of native (host) plants. Indeed, arthropod communities change
above and below ground in dominant stands of alien plants, with effects
including homogenization and loss of ecological functions (Gallé et al.,
2015; Gerber et al., 2008; Gomes et al., 2018; Ramula & Sorvari, 2017;
Schirmel, 2020; Tanner et al., 2013; see also Chapter 5). A global
meta-analysis of 198 field and laboratory studies on the impacts of alien
plants on animals (mostly birds and insects) revealed 56% negative and
44% neutral outcomes, but not a single positive one (Schirmel, 2020).

Table 6.2 Numbers of alien insect species per taxonomic
order extracted from the Zenodo database “International
Nonnative Insect Establishment Data” for nine regions.
Order No. alien insect species Percentage

Coleoptera 2016 26.4
Hemiptera 1603 21.0
Hymenoptera 1486 19.5
Diptera 876 11.5
Lepidoptera 836 10.9
Psocodea 260 3.4
Thysanoptera 255 3.3
Blattodea 92 1.2
Orthoptera 70 0.9
Dermaptera 23 0.3
Neuroptera 22 0.3
Odonata 22 0.3
Siphonaptera 20 0.3
Others 54 0.7
Total 7635 100

From the Zenodo database “International nonnative insect establishment
data”. (Accessed 1 August 2022).
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Tallamy et al. (2021) concluded that host range expansions of some herbiv-
orous insects to alien plants do not compensate for the loss or decline of food
and habitat if native plants are replaced by alien plants.

Models and extrapolations suggest that the number of new records of
alien species reported over time is not showing any sign of saturation and
will increase in the future (Roques et al., 2016; Seebens et al., 2017),
with other drivers of global change almost certainly contributing to this
trend. Particularly strong increases in the establishment of alien species
have been predicted for Europe and North America (with more than
1000 established alien arthropod species in each region predicted to arrive
by 2050) and South America and temperate Asia (with more than 500 spe-
cies each predicted to arrive by 2050) (Seebens et al., 2021). Alien insects
prefer anthropogenic habitats, such as parks and gardens, (sub)urban, ruderal
and agricultural lands, and indoor situations (buildings, greenhouses, storage
facilities), but are also widely present and thrive in most natural terrestrial
habitats (Lopez-Vaamonde et al., 2010; Py�sek et al., 2010).

Alien insects can enter new areas intentionally or unintentionally
through various pathways (Hulme et al., 2008). Intentional introductions
mostly consist of species introduced as biological control agents (predators
and parasitoids) (e.g., parasitic wasps, ladybird beetles) or pollinators (e.g.,
bumblebees), but insects can also be introduced as pets (e.g., stick insects,
ants) or as food for humans or animals (e.g., grasshoppers, flies) (Kumschick
et al., 2016). In recent years, introductions of biological control agents have
decreased in number because regulations have been implemented to
consider nontarget effects prior to release (Hajek et al., 2016; Kenis et al.,
2017). Nowadays, most alien insects are unintentionally introduced through
a variety of pathways (Rabitsch, 2010). For example, eggs, juveniles, and
adults can be translocated as contaminants of nursery plants (e.g., aphids
and scales), wood and wood chips (e.g., bark beetles and longhorn beetles),
or fruits (e.g., fruit flies and mealybugs), or as stowaways within containers
and luggage (e.g., ants and social wasps). Pathways of introduction are sub-
ject to dynamic global demand and supply chains, transportation routes, and
countries’ economies and so change over time (Essl et al., 2015). An analysis
of spread patterns of alien insects in Europe revealed that unintentionally
introduced species spread faster than intentionally introduced species and
that spread rates were significantly higher for species detected more recently
(after 1990), probably due to political changes and reduction of border con-
trols within the European Union (Roques et al., 2016).
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It is anticipated that most of these alien insects have neutral or negligible
impacts on biodiversity, health, or the economy, although the foundation
for this assumption is hampered by a considerable lack of data and partly
also by varying definitions of “impact”. This paucity of evidence-based
impact data applies to most invertebrate groups (Kumschick et al., 2015;
Py�sek, Blackburn, et al., 2017) and is particularly concerning for impacts
on biodiversity. It is important to recognise that biological invasions are dy-
namic processes, and therefore statements on impacts can only reflect current
situations and usually do not consider long-term ecological processes (e.g.,
invasional meltdown) or evolutionary processes (e.g., niche shifts, coevolu-
tion and coextinction, extinction debts).

Invasive alien insects can affect native species and ecosystems in various
ways (Kenis et al., 2009). In particular, impacts on insect biodiversity can
be observed through the following mechanisms: (1) predation and para-
sitism, (2) competition, (3) transmission of pathogens and diseases, and (4)
hybridization. The following sections provide selected examples and case
studies on these mechanisms to illustrate the possible role invasive alien in-
sect species can play in decreasing native insect diversity.

Impact mechanisms

Predators, parasites, and parasitoids
Predators
Predatory alien insects can consume native species and lead to changes in
populations and communities, either directly or indirectly (e.g., via meso-
predator release) (Hawkins et al., 2015). There are many examples of alien
insects impacting native insect species through predation (Kenis et al., 2009;
Wagner & Van Driesche, 2010) and here we outline three case studies: Har-
monia axyridis, social wasps, and ants.

Harmonia axyridis (Coleoptera: Coccinellidae)
The harlequin ladybird, H. axyridis (Coleoptera: Coccinellidae), has a large
native range in Asia but has been intentionally introduced to many countries
as a biological control agent of aphids (Roy et al., 2016). It has also arrived in
many other countries unintentionally transported as a stowaway and
through natural spread from adjacent regions (Siljamo et al., 2020).
H. axyridis has spread rapidly within and between countries globally (Brown
et al., 2011) and is now present on all continents other than Antarctica.
Although H. axyridis was introduced as a predator of pest insects (especially
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aphids), it also consumes many non-pest insects, including other ladybirds,
lacewings, and hoverflies (Grez et al., 2016; Ingels & de Clercq, 2011;
Roy et al., 2012; Wells et al., 2017). However, intraguild interactions are
complex and the outcomes are affected by many interacting factors
including species life-history traits (Wells et al., 2017), landscape, and climate
(Purse et al., 2015). Interactions with the environment are generally seen as
crucial not only for the likelihood of establishment and spread but also for
the impact on native species (Evans et al., 2011).

Insect populations are highly dynamic and deriving long-term trends
against a background of fluctuations in abundance can be difficult (Didham
et al., 2020). There is robust evidence that H. axyridis is contributing to
long-term declines of some species of insects (e.g., Adalia bipunctata) through
predation and competition (Brown et al., 2022; Roy et al., 2016), but it is
important to consider other drivers of change, including climate change
and land use change alongside biological invasions, in determining the
threats to insects and ultimately leading to potential solutions (Soares
et al., 2023).

Understanding the implications of population and community level
change to ecosystem function is difficult. There is considerable scope to
explore the effects of H. axyridis on ecological networks and, ultimately,
ecological function. The importance of large, generalist coccinellids in con-
trolling aphids within agricultural systems has been demonstrated (Costama-
gna et al., 2008). H. axyridis is an effective aphid predator and more recently
has been considered as a biological control agent of other pest insects, for
example fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) (Di
et al., 2021) and tobacco cutworm, Spodoptera litura (Islam et al., 2022).
However, there are concerns that the dominance of H. axyridis within nat-
ural enemy assemblages could adversely impact pest control services by
reducing resilience associated with diversity. Increasing understanding of
the effects of insect diversity, and specifically species interactions, on ecolog-
ical resilience should be a priority (Roy & Brown, 2015); currently, the ef-
fects of complex interactions on the resilience of insect populations are
highly uncertain (Saunders et al., 2020).

Vespa, Vespula, and Polistes (Hymenoptera: Vespidae)
Being generalist predators, invasive social wasps of the genera Vespa, Vespula,
and Polistes (Hymenoptera: Vespidae) can exert a strong impact on the ento-
mofauna of the invaded areas. A colony of the Asian hornet, Vespa velutina,
has been estimated to consume a mean of about 97,000 prey items (11.3 kg
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of insects) per season (Rome et al., 2021). This wasp was first considered as
preying primarily on honeybees in the invaded range in Europe (Monceau
et al., 2013). Specialization toward exploiting honeybees is also observed in
the Asian giant hornet Vespa mandarinia, which has recently been uninten-
tionally introduced to North America (Wilson et al., 2020).

The greatest impact of Asian hornets is a consequence of their hawking
behavior around beehives, which results in the disruption of the foraging ac-
tivity of bee colonies, while the predation per se mostly appears to threaten
isolated or unhealthy beehives (Requier, Rome, et al., 2019). However,
analyzing large numbers of prey pellets, Rome et al. (2021) confirmed
that V. velutina is a generalist predator, consuming prey that includes 11 or-
ders and 43 families of insects, 3 families of spiders, and 4 families of verte-
brates, with honeybees representing only 39% of the diet. V. velutina also
appeared as an opportunistic predator, preying mostly on abundant species,
suggesting that the wasp has a lower impact on entomofauna, especially on
rare and endangered species, than initially postulated. The predation impact
on other pollinators seemed low, with wild bees (bumblebees and solitary
bees) representing only 0.02% of the prey (Rome et al., 2021).

Two Vespula species introduced from Europe to New Zealand during
the 20th century, the German wasp, Vespula germanica (introduced in
1944), and the common wasp, Vespula vulgaris (introduced in the 1970s),
are major predators of native invertebrates in southern beech (Nothofagus
spp.) forests of South Island (Beggs, 2001; Beggs & Rees, 1999; Harris,
1991). The high density of both alien hornets is probably driven by the
abundance of honeydew from native scale insects (e.g., Ultracoelostoma assim-
ile, Hemiptera: Margarodidae), although the consumption of fermenting
honeydew by V. germanica is hypothesized to have led to its displacement
by V. vulgaris because of intoxicating effects (Beggs, 2001). Harris (1991)
estimated the prey loads entering Vespula nests in Nothofagus forests to be
0.8e4.8 million per hectare per season, representing a biomass of
1.4e8.1 kg/ha. A single colony of V. germanica can predate around 1.8 kg
of prey per season, which corresponds to 236,842 prey items (Harris &
Oliver, 1993). Both species are generalist predators, although differences
have been noted in their respective diet composition, V. germanica foragers
returned to nests with more Orthoptera and large Hymenoptera, whereas
V. vulgaris collected more Hemiptera and Lepidoptera (Harris, 1991). Beggs
and Rees (1999) thus estimated that some lepidopteran larvae (e.g., the
native moth Uresiphita polygonalis subsp. maorialis, Lepidoptera: Crambidae)
have little chance of surviving. In other invaded regions, the diet of
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V. germanica also consists mostly of spiders, lepidopteran larvae, hymenop-
terans, and flies (e.g., Patagonia) (Sackmann et al., 2000). The North Amer-
ican Vespula pensylvanica introduced to Hawai’i also exhibited a very broad
diet, with prey including several endemic species such as the cerambycid Pla-
githmysus funebris and the spiders Misumenops vitellinus and Lycosa hawaiiensis
(Elias & Porch, 2022; Gambino et al., 1987).

However, poisoning experiments carried out to reduce densities of Ves-
pula wasps in different regions tended to show that these invasive alien spe-
cies may exert a more limited impact than expected on the local arthropod
assemblages. In Patagonia, the abundance, species richness, and composition
of the arthropod community did not differ between nonpoisoned and
poisoned sites where the abundance of V. germanica was effectively reduced
(Sackmann et al., 2008). Similarly, Duthie and Lester (2013) did not observe
any difference between wasp-removed and wasp-maintained insect com-
munities after having reduced the density of V. vulgaris by about 60% in
Nothofagus forests in New Zealand. Nevertheless, it could be hypothesized
that these experiments did not run for enough time to allow the commu-
nities to fully recover from long-lasting Vespula invasions.

Invading Polistes species are impacting the lepidopteran entomofaunas.
An average colony of 120e150 wasp larvae of the yellow paper wasp, Polistes
versicolor, a native of South America, has been estimated to consume an
average of 329 mg of fresh insect prey per day in the Gal�apagos archipelago
where it was introduced in 1988 (Parent et al., 2020). Although the wasps
also carry spiders, beetles, and flies back to the colonies, half of the prey items
(46%) are lepidopteran larvae. Lepidoptera have also been identified as the
predominant prey in the diet of the Asian paper wasp, Polistes chinensis
established in New Zealand in the 1970s (Ward & Ram�on-Laca, 2013).
Clapperton (1999) calculated that in a site where 210 nests are present per
hectare, Asian paper wasps consume as much as 957 g of invertebrate
biomass per hectare per season. However, nests were found in open areas
created by human disturbances, predominantly on anthropogenic structures.
The pattern of utilizing anthropogenic habitats as nesting sites was
even more important in another invading Polistes species, Polistes dominula,
established in 2016 on South Island (McGruddy et al., 2021). Thus, the
impact on native Lepidoptera communities in natural forests could be
limited.

Ants (Hymenoptera: Formicidae)
Invasive alien ants (Hymenoptera: Formicidae), when established, can cause
significant changes to insect communities and ecosystems (e.g., changing
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patterns of succession, seed dispersal, and pollination) and have a range of
other effects, including on other arthropods and vertebrates, plants, agricul-
ture and forestry, infrastructure, as well as livestock, pet, and human health
(Holway et al., 2002; Lach & Hooper-B�ui, 2010). The Argentine ant, Line-
pithema humile, the red imported fire ant, Solenopsis invicta, the little fire ant,
Wasmannia auropunctata, the yellow crazy ant, Anoplolepis gracilipes, and
several other species have displaced native ant species and reduced diversity
almost everywhere they have become established. The bigheaded ant Phei-
dole megacephala is suspected to have caused extinction(s) of endemic flightless
flies on O’ahu (Hawai’i) (Evenhuis, 1997) and contributed to the extinction
of the carabid beetle Blackburnia tantalus that disappeared in the 1940s (Elias
& Porch, 2022), yet extinctions of native insect species have rarely been re-
ported so far or remain anecdotal (Py�sek, Blackburn, et al., 2017).

The predatory nature of invasive alien ants varies widely between spe-
cies, from highly specialized (e.g., on termites) to very generalistic and
opportunistic, and within species, depending on life stage and caste, colony
status, and availability of resources. Although it is often difficult to separate
the effects of predation and competition, direct effects from predation are for
example described from S. invicta, P. megacephala and L. humile, actively raid-
ing nests of native ant species (Zee & Holway, 2006), eventually leading to
their demise.

Parasites and parasitoids
Alien insects that are parasites or parasitoids of native species can have nega-
tive impacts on populations and communities, either directly or indirectly
(e.g., through apparent competition) (Hawkins et al., 2015). More than
1000 parasitoid species have been introduced for biological control world-
wide since the 19th century (Kenis et al., 2017; Parry, 2009; van Lenteren
et al., 2006). While several of them have at times been reported attacking
native insects, negative impacts on native insect fauna have been shown
or suspected only in very few cases (Kenis et al., 2009; van Lenteren
et al., 2006). Most of these cases refer to introductions made several decades
ago, when prerelease procedures to assess potential nontarget effects of
introduced biological control agents had not yet been put in place (Hajek
et al., 2016). For example, the tachinid fly Bessa remota, released in Fiji in
the 1920s, is thought to have eradicated the target species, the coconut
moth Levuana iridescens, and a nontarget native moth,Heteropan dolens (Kuris,
2003). Another tachinid, Compsilura concinnata, introduced from Europe to
Eastern North America in the early 20th century for the control of gypsy
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moth, Lymantria dispar, is strongly suspected to have contributed to the
decline of several native saturniid moths (Elkinton & Boettner, 2012).
Strong declines of native hosts may also result in the decline of their native
natural enemies, as observed with Lespesia frenchii, a parasitoid of Saturniidae
that apparently disappeared from New England following the decline of its
hosts caused by the introduction of C. concinnata (Parry, 2009).

Understanding the impacts of alien parasites and parasitoids on native in-
sects is complex because the effects of parasitism extend beyond regulation
of the host population to communities and ecosystems because of direct and
indirect interactions at multiple scales (Roy & Lawson-Handley, 2012).
Indeed, it is important to consider the interconnectivity among species
within complex ecological networks because declines in one species can
lead to declines of other species within the same network many links
away and such cascading effects are considered to be hidden drivers of insect
declines (Kehoe et al., 2021).

Knowledge of many basic aspects of the biology of parasites and
pathogens of wildlife is lacking (Roy et al., 2017) and so we are far from
understanding their role in insect declines. There is no doubt that complex
interactions among species and with the environment will shape the
outcomes of biological invasions involving parasites. A recent study demon-
strated the below-ground effect of mycorrhizal fungi on beeepathogen
interactions through changes in floral defensive chemistry (Davis et al.,
2019). Climate change is likely to alter the dynamics of hosteparasite
interactions in the future. For example, scenarios of global warming project
an increase in climatic suitability within temperate regions of the northern
hemisphere for the small hive beetle, Aethina tumida, a parasite of honeybee
(Cornelissen et al., 2019) and bumblebee colonies (Hoffmann et al., 2008).
Taking a holistic approach to unraveling parasite dynamics is critical to
informing understanding of the mechanisms of impacts of parasites within
biological invasions (Dunn & Hatcher, 2015; Roy et al., 2022) and,
ultimately, their role in insect declines (Plowright et al., 2021). Coordinated,
interdisciplinary approaches, perhaps following the concepts of One Health,
would contribute to informing research and action on pathogens and
parasites of wildlife more broadly (Roy et al., 2017).

Competition
Alien insects can compete with native species for resources (e.g., food, nest-
ing materials, and space), leading to changes in populations and communities
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(Hawkins et al., 2015). Competition is often difficult to quantify, but there
are several examples of alien insects outcompeting native species (Kenis
et al., 2009; Wagner & Van Driesche, 2010). Here we briefly mentionMeg-
astigmus chalcid wasps, ants, and the knock-on effects of alien herbivorous
insects reducing food availability for native monophagous insect species.

Megastigmus chalcid wasps (Hymenoptera: Torymidae)
Megastigmus chalcids infesting seeds of woody plants include a large number
of invading species that are easily moved around the world with the seed
trade. Usually, the seeds of native plants had already been exploited by native
chalcids when the alien chalcids arrived. In Europe, at least 11 alien Mega-
stigmus species became established during the 19th and 20th centuries,
competing with 10 native species of seed chalcids for conifer and angiosperm
seed resources (Roques & Skrzypczy�nska, 2003). Auger-Rozenberg &
Roques (2012) showed that the competitive interactions between alien
and native chalcids, and the subsequent consequences for the natural regen-
eration of plants, are highly variable. In firs (Abies spp.), the native Megastig-
mus suspectus, facing three alien species introduced from North America, has
been progressively displaced by one of these invaders (Megastigmus rafni)
probably because of the longer size of the ovipositor of the invading species,
which enables it to lay eggs in cone parts not accessible to the native species.
This displacement has not increased seed infestation significantly. By
contrast, in seeds of wild roses (Rosa spp.) seed resources appeared to be
shared between the nativeMegastigmus aculeatus and two alien species (Mega-
stigmus nigrovariegatus from North America andMegastigmus alba of unknown
origin). Egg-laying of the alien species is much later than that of the native
species and occurs when larval development of the native species has already
begun. Seed damage due to the two alien species thus adds to that of the
native species, significantly increasing the total infestation of seeds (Auger-
Rozenberg & Roques, 2012). A similar sharing pattern, and the subsequent
additive effect on seed damage, has previously been observed in seeds of ce-
dars (Cedrus spp.) whereby two alien species successively introduced in
southeastern France compete in the absence of native seed chalcids (Fabre
et al., 2004). However, the most recently introduced species, Megastigmus
schimitscheki (originating from Anatolia, first recorded in 1994), is progres-
sively becoming dominant because of both its early egg-laying behaviour
and predation amongst larvae with late instars consuming the younger larvae
of Megastigmus pinsapinis, introduced from North Africa before the 1950s
(Boivin et al., 2008).
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Ants (Hymenoptera: Formicidae)
Competition for food resources is considered a key mechanism for the suc-
cess of invasive alien ant species against native ant species, e.g. Sanders et al.
(2003) for L. humile, Hoffmann & Parr (2008) for P. megacephala, Guénard
et al. (2010) for Brachyponera chinensis. The competitive advantage is caused
by faster detection rates of resources and higher recruitment by alien ants in
comparison to native species of ant, i.e., numerical dominance or exploita-
tion of additional food resources, such as honeydew produced by Hemiptera
or extrafloral nectaries (Lach & Hooper-B�ui, 2010). Environmental factors,
e.g., humidity, can alter the competitive balance, but it is most likely the
invasibility of habitats, specifically the level of disturbance, that drives ant
invasions (King & Tschinkel, 2008; Krushelnycky et al., 2010).

Invasive herbivorous insects
Competition for resources also includes cases where an invasive alien insect
causes a significant decline of a plant, affecting populations of insects feeding
exclusively or mostly on this plant. While such an effect is expected to be
rather frequent, data to quantitatively assess insect decline through this
mechanism are rare. In the Gal�apagos, the invasive alien scale insect Icerya
purchasi is suspected of having caused local extinctions of Lepidoptera by
killing their only host plants (Roque-Albelo et al., 2003). It is indisputable
that the severe reduction of ash species (Fraxinus spp.) in North America
following the invasion of the emerald ash borer, Agrilus planipennis from
Asia, has had dramatic consequences for all species using ash as their main
or only food or habitat resource, with 43e98 arthropod species considered
at risk (Gandhi & Herms, 2010; Wagner & Todd, 2016). The same probably
occurred when the balsam woolly adelgid,Adelges piceae, infested Fraser fir in
the Appalachian Mountains (Jenkins et al., 1999). In Europe and the Eastern
Black Sea region, the introduction of the box tree moth,Cydalima perspectalis
from Asia, is threatening the native box tree, Buxus sempervirens, causing
concern for the ecological survival of this species. Mitchell et al. (2018)
have documented that, in Europe and the Caucasus, 12 insects, 6 mites,
43 Fungi, and 3 chromista have only been recorded on Buxus spp., suggest-
ing that these species are obligate on Buxus spp. and are most at risk from the
decline and loss of Buxus spp.

Hybridization
If related, but geographically isolated species or subspecies are brought
together, including through the movement of species by human activities,
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and reproductive barriers are ineffective, propagation of fertile offspring may
happen. Hybridization, while being a frequent mechanism of speciation in
plants (and less often in animals), can also lead to the incorporation of the
genetic material of one species into the gene pool of the other species via
backcrossing (introgression). The outcome of such a transfer can increase
or decrease the fitness of the recipient species (Mallet, 2005). There is a
risk that well-adapted genotypes of a native species are diluted and ulti-
mately lost by a complex mixture of genes, including alleles of alien species.
Well-studied examples from the insect world include introduced subspecies
ofApis mellifera and Bombus terrestris (Jensen et al., 2005) that have been trans-
located around the world to enhance pollination services and consequently
crop yields and honey production (Velthuis & Van Doorn, 2006).

Apis mellifera
A decline in the genetic diversity of European honeybees A. mellifera has
been reported during the last century (Espregueira Themudo et al., 2020).
Two subspecies are mainly selected by beekeepers and farmers for commer-
cialization: A. mellifera subsp. ligustica (from Italy) and A. mellifera subsp. carn-
ica (from southern Austria and Slovenia to the northern Balkans). After
repeated introductions into northwest Europe, introgression of A. m. ligus-
tica into the native A. mellifera subsp. mellifera was found in Danish and En-
glish populations (Jensen et al., 2005); in Germany,A. m. melliferawas almost
completely replaced by A. m. carnica (Kauhausen-Keller & Keller, 1994).
Presumably because of the presence of nomadic beekeepers in the surround-
ings, restrictions on the import of honeybees failed to protect A. m. mellifera
in a protected area of Russia, where the introgression increased 10 times in
15 years with more than 30% of the honeybee colonies belonging to the
introduced lineage (Kaskinova et al., 2021). Although conservation plans
aim to protect A. m. mellifera and other subspecies (Fontana et al., 2018)
and some programs have been proven to be efficient (Hassett et al.,
2018), A. mellifera subspecies are still considered to be threatened by gene
flow from commercial honeybees (Requier, Garnery, et al., 2019).

Bombus terrestris
Introgression among commercial bumblebee colonies and native popula-
tions has also been linked to the decline in B. terrestris subspecies.
B. terrestris is native to the western Palaearctic region, where nine subspecies
have been recognized (Rasmont et al., 2008). The commercial rearing of
this species started in Europe in the late 1980s to enhance pollination
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services, especially in greenhouses. Today, mainly two subspecies are
commercialized because of their adaptability and performance (Bombus ter-
restris dalmatinus and B. t. terrestris) (Moreira et al., 2015; Velthuis & Van
Doorn, 2006). Bumblebees may easily escape from greenhouses and breed
with wild populations (Moreira et al., 2015; Seabra et al., 2019). The genetic
structure of wild populations in Europe reveals a clear admixture between
British and continental European B. terrestris populations which might be
explained by the effects of commercialization (Moreira et al., 2015). In
Poland, wild bumblebee populations surrounding greenhouses with com-
mercial B. terrestris colonies showed a percentage of introgression from
33% to 47% (Kraus et al., 2011). In most of the Iberian Peninsula, where
B. terrestris commercial breeds are naturalized and escapes from greenhouses
occur, hybridization and introgression are affecting native populations of
Bombus terrestris lusitanicus (Cejas et al., 2021; Seabra et al., 2019); in southern
Spain, introgression occurs in protected natural parks more than 60 km away
from commercial bumblebee release areas (Bartomeus et al., 2020). Impor-
tation policies to protect endemic subspecies have been implemented in
several regions within B. terrestris native range (e.g., Norway, Turkey, the
United Kingdom, and the Canary Islands) (Velthuis & Van Doorn, 2006),
but regulations are still lacking in many other regions (Cejas et al., 2021;
Lecocq et al., 2016). In Japan, mating between B. terrestris and two endemic
species, Bombus hypocrita subsp. sapporoensis and Bombus ignitus, leads to the
production of inviable hybrid eggs, and therefore hybridization might facil-
itate native species decline as a consequence of wasted reproductive effort
(Tsuchida et al., 2019).

The above examples, including honeybees and bumblebees, concern hy-
bridization between native and alien subspecies. Although some studies
report hybridization between alien and native insect species (Anderson
et al., 2018; Sakamoto & Yago, 2017), examples of the displacement of
native species are scarce. This might be due to a lack of studies and inherent
difficulties in detecting such events, but with the available information
today, hybridization between alien and native insects would not seem to
be a significant cause of a general insect decline. Finally, cases of hybridiza-
tion between different alien insect species in their new range have also been
documented, e.g., the fertile hybrid between S. invicta and Solenopsis richteri
in the southern United States of America (Pandey et al., 2019), outcompet-
ing native ants (Gibbons & Simberloff, 2005). The hybrid S. invicta x richteri
further demonstrates several positive effects (e.g., higher environmental
tolerance and higher recruitment rates) (Fournier & Aron, 2021).
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Transmission of parasites and pathogens
Invasive alien species can be hosts and reservoirs for parasites and pathogens
and as such can facilitate their spread through the process of “spillover” or act
themselves as new hosts for parasites which they ultimately transmit to native
species, a process termed “spillback” (Kelly et al., 2009). Land-use change,
operating at various scales from local to regional, can increase the exposure
and susceptibility of wildlife to parasites and so facilitate spillover (Plowright
et al., 2021). There are few examples of spillover in wild animals because
parasite outbreaks in wildlife are often unnoticed unless humans are affected;
this is particularly the case for insect diseases (Hesketh et al., 2010). Empirical
evidence for spillback is also lacking, although there are many examples of
alien insect species becoming hosts to generalist parasites following biolog-
ical invasion (Cornell & Hawkins, 1993). However, it is important to note
that the acquisition of parasites and pathogens will not necessarily lead to
spillback to native species (Roy & Lawson-Handley, 2012).

It is highly likely that with every introduced organism at least one alien
pathogen (microorganism, fungus, or virus) is cointroduced, but usually only
symptomatic pathogens are noticed and documented or monitored.
With the exchange of honeybees and bumblebees around the world, a
series of pathogens have become cosmopolitan, some of which cause serious
illness or death in recipient species lacking coevolutionary adaptation (see
Chapter 9 for further details). For example, the protozoan Apicystis bombi
was introduced to South America along with the introduction of
B. terrestris and is held coresponsible for the decline of native bumblebees
(Arbetman et al., 2013). Other pathogens are considered partly responsible
for the decline of bumblebees in North America (Colla et al., 2006). The
extinction of the endemic Madeiran large white butterfly, Pieris brassicae
subsp. wollastoni, is considered to have been caused by the introduction of,
and disease transmission by, the related Pieris rapae (Kenis et al., 2009). These
“novel weapons” can contribute to a competitive advantage of the alien
species (Vilcinskas & Knoll, 2015); however, it is important to note that
many such studies are laboratory based and may lack ecological relevance.

Parasites can be introduced into new regions alongside invasive alien spe-
cies and can alter the outcome of biological invasions through the interac-
tions between invasive alien and native species (Dunn & Hatcher, 2015).
Emerging infectious diseases can be considered to be alien pathogens
spreading into new hosts and there have been many recent accounts of
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the relevance of biological invasions in the spread of zoonoses (Roy et al.,
2022; Vil�a et al., 2021, Chapter 9).

Although there is a scarcity of evidence of the role of pathogens in
driving insect declines either directly or indirectly, there are several well-
documented case studies particularly in relation to pollinating insects and
specifically bees. A. mellifera, B. terrestris, and Bombus impatiens have been
intentionally introduced for crop pollination purposes and this has resulted
in the unintentional introduction of bee pathogens to countries and conti-
nents where they do not naturally occur (Goulson & Hughes, 2015).
Worryingly, more than three quarters of commercially available bumblebee
colonies in Europe being tested have been found hosting various parasites
(Graystock et al., 2013). Consequently, there is a risk of spillover to native
bees which are naïve to the parasites and may have little resistance to
them (Graystock, Blane, et al., 2016; Meeus et al., 2011). Indeed, this has
led to one of the most well-documented examples of impacts of parasites
on insect declines: the population collapse of the South American bumble
bee Bombus dahlbomii (Box 6.1).

BOX 6.1 Case study of Bombus dahlbomii in South America
The introduction of alien bumblebees in South America is associated with the
decline of Bombus dahlbomii (Fig. 6.1), the only native bumblebee of the
temperate forests in the continent and the southernmost bumblebee in the world.
Two Palearctic bumblebee species, Bombus ruderatus and B. terrestris, were
introduced into Chile to enhance pollination services. The introduction of
B. ruderatus was restricted to nearly 200 queens per event in two sites and two
events in 1982 and 1983 (Arretz & Macfarlane, 1986). The introduction of
B. terrestris started in 1997, and its commercialization continues to the present
day (Aizen et al., 2019; Ruz, 2002). By June 2016, about 1,200,000 developed col-
onies and inseminated queens of B. terrestris had been introduced in Chile (Aizen
et al., 2019). Unfortunately, both species have established in the wild, and spread
in Chile and neighboring Argentina, ranging from the Pacific to the Atlantic (Mo-
rales et al., 2016; Rendoll-Carcamo et al., 2017). The decline of B. dahlbomii started
with the arrival of B. ruderatus and was later enhanced by the arrival of B. terrestris
which became the most abundant and widespread Bombus species in Patagonia
and central Chile (Morales et al., 2013; Schmid-Hempel et al., 2014). At a regional
scale study in Patagonia, B. terrestris accounted for more than 85% of all
bumblebee individuals recorded and was an order of magnitude more abundant
than B. ruderatus and B. dahlbomii combined (Morales et al., 2013). B. dahlbomii has
been displaced frommany localities and is now recognized as an endangered spe-
cies on the IUCN Red List (Morales et al., 2016).
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BOX 6.1 Case study of Bombus dahlbomii in South
America (cont'd )

The spread of diseases by cointroduced parasites has been proposed as a
possible explanation for the decline of B. dahlbomii in South America (Arbetman
et al., 2013; Morales et al., 2013). The pathogenic protozoan parasite Apicystis
bombi was absent in B. dahlbomii and B. ruderatus in Argentina before
B. terrestris arrived. After the introduction, it was detected in all three species. Mo-
lecular analysis showed that A. bombi sequences in Patagonia matched the Eu-
ropean ones, suggesting that the parasite was cointroduced with B. terrestris and
then spilled over to the other two bumblebee species (Arbetman et al., 2013;
Maharramov et al., 2013). Bumblebee samples from 2004 to 2012 from Chile
and Argentina showed that another protozoan parasite, Crithidia bombi, is wide-
spread and has a high prevalence (B. dahlbomii 18.5%, B. ruderatus 7.7%, and
B. terrestris 14.4%) (Schmid-Hempel et al., 2014). The genetic diversity of
C. bombi populations increased in samples from later years compared to samples
from 2004, and its population genetics was similarly structured as for B. terrestris,
suggesting the expansion of B. terrestris to be a main structuring factor for
C. bombi (Schmid-Hempel et al., 2014). Another study performed in southern
Chile analyzing samples from 2015 to 2017 suggested that the prevalence of
C. bombi rapidly increased. It rose to over 77% for the three bumblebee species,
and all B. dahlbomii samples were infected with the parasite (Arismendi et al.,
2021). It is not clear to what extent the transmission of these pathogens can
explain the decline of B. dahlbomii in South America, but considering the
extremely fast decline of the native species and the known negative effects of

(Continued)

Figure 6.1 Bombus dahlbomii. From Victoria Werenkraut.
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Conclusions

The case studies above illustrate how invasive alien insects can play a
significant role in the decline of native insect populations through predation,
competition, parasitism, and parasitoidism, the transmission of parasites and
pathogens, and, less frequently, through hybridization. However, there is a
lack of evidence on the magnitude of the direct impacts of invasive alien in-
sects in contributing to large-scale declines of insect populations, compared
to, for example, habitat loss, agricultural intensification, and pesticide use.
Ultimately, biological invasions, as well as insect and pollinator decline,
are context-dependent, often subtle in nature, and difficult to quantify.
But there should be no doubt or denial of the potentially serious negative
consequences of invasive alien insects, particularly interacting with other
drivers of environmental change, for ecosystem health and human well-
being.
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Introduction

Insects dominate invertebrate introductions, contributing with the
highest percentage to the group of alien terrestrial invertebrates recorded
to date (i.e., 87%; Roques, 2010). However, several other invertebrates
(e.g., crayfish, earthworms, spiders) are also commonly introduced, and
some of them have considerable ecological and/or economic impacts
(Lodge et al., 2012; New, 2016).

Some alien non-insect invertebrates have been deliberately introduced
for different purposes such as food, animal/pet food, or as pets. However,
most non-insect invertebrate introductions are unintentional (Lodge et al.,
2012; Nelufule et al., 2020). Despite the severe impacts that alien non-
insect invertebrates might cause in the introduced areas (Kenis & Branco,
2010; Mazza & Tricarico, 2018), non-insect invertebrate invasions are
most likely underestimated compared with insect invasions (with the excep-
tion of the well-studied crayfish invasions; Lodge et al., 2012; Twardochleb
et al., 2013). For this reason, the main aim of this chapter is to review the
direct and indirect impacts of non-insect invertebrates on native insect diver-
sity in freshwater and terrestrial environments (see also New, 2016). How-
ever, up to now, most of the research on this topic has been conducted on
crayfish; therefore, this chapter will have a strong focus on this taxon.

Freshwater environments

As mentioned above, an exception among the scarce studies on alien
non-insect invertebrates is represented by alien crayfish species, which have
been widely introduced worldwide and are recognized as a major threat to
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freshwater biodiversity and ecosystem functioning (reviewed in Lodge et al.,
2012; Twardochleb et al., 2013). Crayfish are the largest freshwater macro-
invertebrates and are considered keystone species and ecosystem engineers in
aquatic habitats (Lodge et al., 2012). They are omnivorous and feed on a va-
riety of prey, including native aquatic larvae and adults of insects, possibly
causing a decrease in their richness and abundance or even extinction, and
thus changing the community structure of native invertebrates and inducing
trophic cascades (Carvalho et al., 2022). These changes can lead to a tempo-
rary shift in trophic guild composition and functionality (Rodríguez-Pérez
et al., 2016) and can even persist over time with no evidence of recovery,
suggesting that crayfish invasions can cause significant perturbations leading
to permanent changes in benthic communities, native insects included
(Mathers et al., 2016).

It has been evidenced that the impact of crayfish on native insects can
depend on the invasive crayfish species and its density (Galib et al., 2022),
the invaded habitats, the substrate composition (Beatty et al., 2020), the hy-
drological conditions of the invaded areas (Mathers et al., 2020), and the
availability of prey and their life stages (Klose & Cooper, 2012; Siesa
et al., 2014). Indeed, impacts usually increase with higher crayfish densities
(Galib et al., 2022; Gherardi & Acquistapace, 2007) and can be more evident
under moderate-low flow regime conditions, which allow for better crayfish
establishment and thus greater impacts (Mathers et al., 2020). Moreover, for
many native aquatic insects, larvae are the most vulnerable and predated
stage (e.g., Odonata; Siesa et al., 2014). The impact has been shown to be
different according to the diverse taxa and species life habit traits, with Odo-
nata (and in some cases Plecoptera, Trichoptera, and Ephemeroptera; Math-
ers et al., 2016) being the most affected by crayfish presence for their less
mobility and thus more vulnerability to predation (Coughran & Daly,
2012; Gherardi & Acquistapace, 2007; Jackson et al., 2014; Lodge et al.,
1994; Qing et al., 2022; Renai & Gherardi, 2004; Rodríguez-Pérez et al.,
2016).

Several studies, conducted mainly in Europe and the United States of
America (USA), showed that the impacts of crayfish on insects are context
and taxon dependent and can be negative and/or positive. Lodge et al.
(1994) found that in sandy-bottomed littoral zones in Plum Lake (Wisconsin,
USA), the rusty crayfish Faxonius (Orconectes) rusticus reduced native snail mac-
roinvertebrate abundance by 99% but had a very low influence on other mac-
roinvertebrate taxa (Diptera and Trichoptera included). Similarly, in the
United Kingdom (UK), the invasion of signal crayfish Pacifastacus leniusculus
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led to a consistent decline in native Sphaeriidae (Bivalvia) abundance
compared with preinvasion periods (Turley et al., 2016), while a number
of native insect taxa (e.g., Baetidae, Chironomidae, and Simuliidae) showed
a greater abundance in postinvasion periods, probably because of their high
mobility, fecundity, and multivoltine, innate, or inducible defense
mechanisms.

Albertson and Daniels (2016) found an increase in native macroinverte-
brate abundance in streams in Pennsylvania (USA) invaded by rusty crayfish
compared to noninvaded streams. This is probably because rusty crayfish can
facilitate the presence and abundance of certain native benthic species by
reducing fine-sediment accumulation in sediment-impaired streams. Odo-
nata were not sampled in that study, but the results revealed a higher pres-
ence of some insect groups, such as Chironomidae, Hydropsychidae, and
Simuliidae, in enclosures containing crayfish. Another study conducted in
Sparkling Lake in Wisconsin (USA) obtained similar findings (Hansen
et al., 2013). The study revealed that, in some cases, the presence of invasive
crayfish can facilitate the abundance of some insects. In this lake, the rusty
crayfish F. rusticus had been subject to a long-term removal campaign
from 2001 to 2012. After the removal, two families of the order Ephemer-
optera, Ephemeridae (Hexagenia spp. and Ephemera spp.) and Heptageniidae
(mainly Stenonema spp.), decreased in densities. This is probably because
sediment excavation activities of crayfish increased aeration and interstitial
spaces in sediments and between cobbles where these taxa live, facilitating
their presence (Hansen et al., 2013). For heptageniids, the authors hypoth-
esized that their abundance might be higher in invaded areas than in non-
invaded or controlled areas, because crayfish often suppress native
gastropods, competitors of these insects for periphyton resources, while
cannot easily predate quickly crawlers such as heptageniids. On the other
hand, after removing crayfish, fishes might switch from consuming crayfish
to other invertebrate prey, such as heptageniids, which are probably more
visible to fish with their crawling movements and thus more vulnerable to
fish predation. On the contrary, in the same study, the density of another
family of Ephemeroptera (Caenidae) strongly increased as rusty crayfish
were removed. These insects are small, cryptic, and slow moving, often
covered in sediment, and are more vulnerable to crayfish predation and
excavation activities but less to fish predation.

More pronounced negative impacts on insects were discovered in-
Germany by Herrmann et al. (2018) and Martens et al. (2018), where a sig-
nificant reduction in Coleoptera, Odonata, and Trichoptera was observed
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between 2015 and 2017 in a pond created for amphibian conservation. Re-
searchers compared the populations of these invertebrates before and after
the rapid increase in density of the alien calico crayfish Faxonius (Orconectes)
immunis. Specifically, a density of>15 crayfish/m2 led to minimum levels of
the abundance of Odonata. The same pond was monitored after 2017,
together with other ponds with or without calico crayfish (Herrmann
et al., 2022). Macroinvertebrate communities from ponds with high
F. immunis densities were characterized by very low abundances in
macrophyte-associated taxa, especially Odonata larvae. Even Ephemerop-
tera larvae, such as Cloeon dipterum, which is highly tolerant to anoxic con-
ditions and was expected to be unaffected by the turbidity caused by
crayfish, had very low abundances in high-density crayfish ponds
(Fig. 7.1). In this way, F. immunis induced a change in macroinvertebrate
community composition in favor of mobile and pioneer species with lesser
need for cover, while abundances of macrophyte-associated species and
slow-moving taxa decreased (Herrmann et al., 2022). A similar effect was
reported for P. leniusculus in Sweden, where artificial ponds with higher

Figure 7.1 Number of individuals of Ephemeroptera and Odonata larvae captured in
ponds with high crayfish densities, managed ponds with lower crayfish densities and
the crayfish free pond. Bars represent the mean � standard errors. Bars for the pond
with no crayfish had no standard error and are provided for visual comparison only.
Modified from Herrmann, A., Grabow, K., & Martens, A. (2022). The invasive crayfish
Faxonius immunis causes the collapse of macroinvertebrate communities in Central Eu-
ropean ponds. Aquatic Ecology, 56(3), 741e750. https://doi.org/10.1007/s10452-021-
09935-5.
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crayfish density were inhabited mostly by ground-dwelling species such as
Chironomidae larvae or mobile taxa like aquatic Heteroptera (Nyström
et al., 1996). As a result, these ponds had lower total biomass of invertebrates
compared to ponds with lower abundance of crayfish.

Another notable invader, the North American red swamp crayfish Pro-
cambarus clarkii, is one of the most introduced and invasive crayfish in Europe
and worldwide (Lodge et al., 2012; Loureiro et al., 2015; Souty-Grosset
et al., 2016). It has been reported to decrease the abundance of Odonata
(e.g., Libellula angelina; Fukui & Iwamoto, 2001), Hemiptera, and Coleop-
tera (Watanabe & Ohba, 2022) in Japan (Fig. 7.2). When considering the

Figure 7.2 Comparison of (A) abundance and (B) species richness of aquatic insects be-
tween wetlands invaded by Procambarus clarkii before the year 2000 and noninvaded
wetlands. Bars show medians and interquartiles. Modified from Watanabe, R., & Ohba,
S. (2022). Comparison of the community composition of aquatic insects between wetlands
with and without the presence of Procambarus clarkii: A case study from Japanese wetlands.
Biological Invasions, 24(4), 1033e1047. https://doi.org/10.1007/s10530-021-02700-7.
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effect of macrophyte consumption by P. clarkii in Japan, insect species
floating near the water surface (skaters, swimmers, swimmer-divers)
appeared to be less vulnerable to crayfish predation. On the other hand, in-
sect species using aquatic plants as food, oviposition substrates, and perches
(climbers, climber-swimmers), and hiding in the bottom substrate
(sprawlers) were more affected by P. clarkii. In Italy, the red swamp crayfish
caused the extinction of Carabus clathratus (Carabidae) by predation on adults
(Casale & Busato, 2008), and affected Odonata in North Italy (Ficetola et al.,
2012) through consumption of their larvae. In some cases, this predation on
Odonata can favor native amphibians, which are heavily predated by drag-
onflies. However, this was not the case in this study area where P. clarkii
highly predated both Odonates and amphibians. Furthermore, it is impor-
tant to stress that indirect relationships between invasive crayfish and native
predatory insects such as dragonflies may be mediated by crayfish predation
over amphibian larvae, which may determine a limited food availability for
insects (White et al., 2006). Finally, in situ experiments with P. clarkii con-
ducted in South Germany (Chucholl, 2013) confirmed its wide range of
macroinvertebrate preys, even if Chironomidae and Ephemeroptera larvae
and zebra mussel Dreissena polymorpha were the most consumed, with
different prey electivity among crayfish size classes: smaller individuals
consistently preferred Chironomidae larvae, while larger crayfish preferred
D. polymorpha and even consumed native terrestrial insects (Hymenoptera
and Coleoptera Scolytinae).

Sometimes, crayfish change the composition of macroinvertebrate com-
munity without decreasing their overall biomass or density. In two boreal
lakes in Finland, macroinvertebrate density (insects included) was similar be-
tween sites with and without P. leniusculus (Ruokonen et al., 2014). How-
ever, invertebrate richness was significantly lower and community
composition was altered in invaded stony sites (e.g., less Gastropoda, Cole-
optera, and Trichoptera species were found), but not at invaded vegetated
sites or in deeper sublittoral areas. Crawford et al. (2006) found that
P. leniusculus reduced the species numbers of Plecoptera, Chironomidae,
Diptera, and Hirudinea in riverine UK systems, with reductions also in
the density of Plecoptera, Hirudinea, Tricladida, and Hydracarina; commu-
nity diversity and richness were lower at sites with crayfish, even if the over-
all invertebrate biomass and individual invertebrate size were not affected.

Aquatic ecosystems are usually invaded by several alien species, and
sometimes two or three introduced crayfish species can be found in sym-
patry. The presence of multiple invaders may have different effects on the
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invaded ecosystems and macroinvertebrate communities, causing, for
example, an additive effect of their independent impacts or an amplified ef-
fect that is greater than the sum of their independent impacts (Jackson et al.,
2014). In the UK, a mesocosm experiment, with allopatric and sympatric
populations of signal crayfish, P. leniusculus, virile crayfish, Faxonius (Orco-
nectes) virilis, red swamp, P. clarkii, and Turkish crayfish, Pontastacus leptodac-
tylus compared with a crayfish-free control, found that each of those species
altered macroinvertebrate community structure in a different way (Jackson
et al., 2014). Overall, benthic invertebrate and insect taxon richness was
highest in the treatment with no crayfish compared with allopatric and sym-
patric virile and signal crayfish treatments, while benthic insect predator
abundance was significantly reduced by sympatric red swamp and Turkish
crayfish but not independently when in allopatry, indicating an amplified ef-
fect in sympatry, especially for predators and carnivorous scavenger insects.
On the contrary, in the allopatric Turkish and virile treatments, the largest
decline in abundance was recorded for gathers and shredders insects and
Diptera.

The previous examples show how crayfish invasions can change the
composition of aquatic insect communities, impacting or facilitating certain
taxa directly by predation or indirectly, i.e., by reducing macrophytes or
altering the substrate. However, invasive crayfish can also impact terrestrial
insects. For example, some species such as P. clarkii can favor the presence of
different taxa inhabiting the soil through their intense digging activity. The
red swamp crayfish is known for actively digging several burrows in the
banks, particularly in soil mostly composed by silt and clay (Barbaresi
et al., 2004). A study conducted in Central Italy in 2007 compared the
soil communities in or out of or between crayfish burrows, finding that
the Shannon diversity index was similar between the three treatments,
even if some orders like Dermaptera and Pseudoscorpions were present
only in the burrows, while others like Hemiptera, Orthoptera, Psocoptera,
and Oligochaeta only in areas without burrows (Tricarico et al., 2010)
(Fig. 7.3).

Other important aquatic invaders having a potentially relevant impact
on native insects are invasive amphipods. As with crayfish, their impacts
can vary depending on the substrate and insect taxon. For example, the
killer shrimp Dikerogammarus villosus is widespread in European inland wa-
ters (Dettloff et al., 2023) and is known to be omnivorous and a voracious
predator, being able to replace other native amphipods and change the
composition of native macroinvertebrate communities (Dettloff et al.,

Invasive alien non-insect invertebrates and insect diversity 179



2023). Early field studies conducted on invasive killer shrimps found that
they actively predate on various native insects, including Sigara sp. (Heter-
optera), Chironomus sp. (Diptera), Caenis robusta (Ephemeroptera), and
Ischnura elegans (Odonata) (Dick et al., 2002; Platvoet et al., 2009). These
results highlighted the direct impacts on invasive killer shrimps on native
macroinvertebrate communities, possibly reducing their abundance and
distribution but also having indirect effects such as predation on predators
(e.g., Odonata larvae), which may cause an increase of their prey, as it was
previously shown for crayfish invasions. Subsequent studies confirmed the
impacts of invasive killer shrimps on native insects: mesocosm experiments
showed that several native macroinvertebrate taxa were completely elim-
inated in invaded treatments, especially on stony substrates, with Oligo-
chaeta, Ephemeroptera (Caenidae), and Diptera (Chironomidae and
Tipulidae) being particularly vulnerable (Macneil et al., 2013; McLean &
Parkinson, 2000). Other invasive alien amphipods, Pontogammarus robus-
toides and Dikerogammarus haemobaphes, which have an omnivorous
(including predatory) feeding behavior, actively predate Chironomidae
more than the native amphipods (Bacela-Spychalska & Van Der Velde,
2013), and can thus pose a similar impact as D. villosus in aquatic
ecosystems.

Figure 7.3 Frequency (%) of the invertebrate orders/classes found in soil samples taken
in the burrow (black), out of the burrow (white), and between two burrows (gray)
Gast ¼ Gastropoda; Coll ¼ Collembola; Dipt ¼ Diptera; Hemi ¼ Hemiptera; Ara-
n ¼ Araneae; Cole ¼ Coleoptera; Acar ¼ Acarina; Hyme ¼ Hymenoptera;
Dipl ¼ Diplopoda; Isop ¼ Isopoda; Pseu ¼ Pseudoscorpions; Orto ¼ Orthoptera;
Psoc ¼ Psocoptera; Olig ¼ Oligochaeta; Nema ¼ Nematoda; Derm ¼ Dermaptera.
Modified after Tricarico, E., Mazza, G., Signorini, F., & Gherardi, F. (2010). Il gambero
invasivo Procambarus clarkii nel Consorzio della Bonifica Parmigiana-Moglia-Secchia.
Studi Trentini di Scienze Naturali, 87, 209e210.
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Terrestrial environments

Most articles on terrestrial invertebrate invasions published to date
have focused on a subset of invasive species (predominantly insects), impact
types (mainly economic impacts related to insect pests of cultivated crops or
impacts on human health; Cameron et al., 2016; Roques et al., 2010), and
geographical locations (e.g., North America, Europe; Janion-Scheepers &
Griffiths, 2020). This research bias limits our current ability to achieve gen-
eral conclusions about the impacts of terrestrial non-insect invertebrates on
native insects globally, particularly in developing countries (Cameron et al.,
2016; Janion-Scheepers & Griffiths, 2020). Moreover, the cryptic nature of
many alien non-insect invertebrates and the lack of taxonomic expertise for
many groups make the ecological impacts of most alien terrestrial non-insect
invertebrates poorly known (Janion-Scheepers & Griffiths, 2020).

Alien non-insect invertebrates can affect native biodiversity and
ecosystem services and processes through various mechanisms (Py�sek
et al., 2020). Kenis et al. (2009) listed several types of ecological impacts
for alien insects, which also apply to other terrestrial invertebrates: negative
effects on native biodiversity through direct (e.g., preying or parasitizing
native species) or indirect impact mechanisms (e.g., cascading effects, by
competing for food or space, carrying diseases, or sharing natural enemies
with native species). In the following paragraph, we discuss the impact of
some alien non-insect invertebrate invasions on native insect populations.

The invasion by land planarians (i.e., flatworms from the order Tricla-
dida) has been long overlooked (Sluys, 2016), especially in countries such
as Italy, the UK, and France, which are the European countries with the
highest diversity of alien planarian species (Mori et al., 2022). The impacts
of these species on native ecosystems are mostly unknown, despite the
fact that some species were reported as voracious predators of native inver-
tebrates (e.g., snails, slugs, earthworms, insect larvae, and even native planar-
ians). In particular, the land planarian Obama nungara may predate some
native insects (e.g., Diptera and silverfish), but current available data are
only anecdotal (E. Mori, personal observation).

Earthworms have been introduced and have established alien popula-
tions in every biogeographic region of the world (Hendrix et al., 2008).
Since earthworms play an important role as ecosystem engineers, they are
expected to alter soil structural properties, organic matter, and nutrient dy-
namics, as well as plant and animal communities above and belowground
(Hendrix et al., 2008). In particular, some invasive alien species such as
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Amynthas spp., Dendrobaena octaedra, Lumbricus rubellus and Lumbricus terrestris,
andOctolasion tyrtaeum have been reported to impact native microarthropods
(Eisenhauer et al., 2007; Hendrix et al., 2008; McLean & Parkinson, 2000).
For example, in Canada, native microarthropod densities and the number of
native microarthropod species (e.g., Collembola) were strongly reduced in
the presence of the invasive earthworm O. tyrtaeum (Eisenhauer et al.,
2007). McLean and Parkinson (2000) found similar results with a general
decrease of native arachnids (i.e., mites) and hexapods (i.e., Collembola)
due to the effects of the invasive epigeic earthworm D. octaedra, probably
through mechanical disturbances, increasing soil compactness, changes in
the physical structure of the organic layers of the soil, and resource compe-
tition. However, further research is needed to evaluate the impacts of earth-
worms on soil insects.

The invasive American pinewood nematode (Bursaphelenchus xylophilus)
has become a major threat to pine forests in southern Europe and could
potentially affect interactions between native insect herbivores and pines.
It causes a wilt disease that leads to the sudden death of native pines.
B. xylophilus is also invading native forests in China where native insect com-
munities have been significantly impacted, decreasing the populations of
native insect predators and increasing the abundance of native herbivorous,
parasitic, and detritivorous native insect species (Wang et al., 2021).

Concerning nematodes, a good example of the need for research on the
impact of alien non-insect invertebrates on native insects is the invasion of an
alien isolate of Oscheius tipulae that was reported in Montecristo Island, an
integral natural reserve of the Tuscan Archipelago National Park (Central
Italy). This island is characterized by a peculiar assemblage of flora and fauna,
with several endemic taxa and some alien species. Since this nematode spe-
cies was originally isolated from Tipula larvae and is also found on native iso-
pods, snails, and adult insects, the analysis of the possible impacts of this alien
nematode on the native invertebrate fauna would be necessary, in the light
of the high levels of endemic taxa of this island (Torrini et al., 2016). This is
of special concern since invasive alien species are considered the most signif-
icant driver of population declines and species extinctions in island ecosys-
tems worldwide (Reaser et al., 2007), and this nematode could have a
relevant role in this context.

The invasion of species from the class Arachnida has also been neglected
(Nentwig, 2015). For example, current knowledge of the overall impact of
alien spiders in Europe is scanty. Spiders can pose relevant ecological impacts
as predators, preying on a wide range of invertebrates. Direct effects on
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insects (through predation) and spiders (through predation and competition)
can be expected, potentially leading to changes in species composition and
trophic guild structure (Nentwig, 2015). The subclass Acari, which includes
mites and ticks, forms an important part of the class Arachnida, with a world-
wide distribution. The honeybee ectoparasite Varroa destructor is the most
famous and causes serious losses through feeding injury in apiaries in Europe
but also worldwide (Navajas et al., 2010; Stout & Morales, 2009). More-
over, to the best of our knowledge, the only confirmed case of the relevant
impact of an alien species from the order Araneae on native insects is repre-
sented by the Australian Redback spider Latrodectus hasseltii (Theridiidae).
This species invaded a small nature reserve on the South Island of New Zea-
land, causing the death of several specimens of the endangered Prodontria lew-
isii (Coleoptera, Scarabaeidae), a narrowly endemic flightless beetle known
only from this area (Bryan et al., 2015).

Alien species from the subphylum Myriapoda are unlikely to pose major
threats to native biodiversity and ecosystems. In Europe, the number of alien
myriapod species known to be established in the wild is very limited. Within
this group, species from the class Diplopoda are detritivorous, and thus alien
species from this group could have indirect impacts on the pedofauna, insects
included, related to direct changes in nutrients and microorganisms. Centi-
pedes (species from the class Chilopoda), on the contrary, are mostly pred-
atory, feeding on different available prey items in the soil (earthworms,
enchytraeids, snails, slugs, small insectsdboth larvae and adultsdand other
arthropods). But their potential negative impact on soil insects is only hy-
pothesized (Stoev et al., 2010).

Conclusions

Up to now, impacts on native insects caused by alien non-insect in-
vertebrates are mostly recorded from freshwater environments, where cray-
fish and amphipods were repeatedly introduced and most studied for their
relevant role in the food webs and their multiple negative direct and indirect
effects on the introduced ecosystems. Impacts caused by invasive alien cray-
fish have been shown to be context and taxon dependent, even though the
less mobile native insect species are the most affected, with consequent
changes in the composition of native communities. In certain cases, the pres-
ence and abundance of some native insect taxa may be facilitated by the in-
vasion of crayfish in both aquatic and terrestrial environments. Studies on
invasive amphipods are increasing, providing more evidence of their impacts
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on native insects and other invertebrates; in a similar way, the research on
crayfish invasions is growing, analyzing their long-term impacts and indirect
effects on native insects (and the overall community) through their bio-
turbation activity on the substrate. For alien non-insect terrestrial inverte-
brates, known (direct and indirect) impacts are mainly potential and/or
anecdotal, but they should not be neglected as they could be relevant and
add to impacts caused by other invasive terrestrial species as showed by cray-
fish invasions in aquatic environments. Further research should be thus
strongly encouraged to improve our knowledge of the impacts caused by
alien non-insect terrestrial invertebrates on native insects and promote the
most appropriate management techniques, possibly avoiding or minimizing
side effects on insects.
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Introduction

Alien vertebrate species represent a relatively small proportion of all
species known to be introduced beyond their native range. In comparison
with alien vascular plants (ca. 14,000 species) (van Kleunen et al., 2019) or
insects (ca. 3200 species only in North America) (Liebhold et al., 2018),
the numbers of fishes, amphibians, reptiles, birds, and mammals that have
established alien populations are counted in hundreds rather than thousands
(Py�sek et al., 2020). Yet, numerous alien vertebrate species are threatening
and reducing native biodiversity across various taxonomic groups and eco-
systems (Doherty et al., 2016; Nentwig et al., 2018). While much research
has been undertaken to identify and mitigate their negative impacts, partic-
ularly on native vertebrate species, comparatively few studies have explored
the impacts of alien vertebrate species on native insect species. Declining
populations of some native insect species listed as Critically Endangered
on the IUCN Red List have been attributed to the impacts of invasive alien
vertebrates (IUCN, 2022) although these declines have often been exacer-
bated by other anthropogenic stressors (see Table 8.1).

Invasive alien vertebrate species have been linked to the extirpation and
extinction of insect species through predation. Some examples are (1) rats
(Rattus ssp.) introduced to Lord Howe Island, which caused the presumed
extinction of the endemic Lord Howe Island stick insect (Dryococelus aus-
tralis) (rediscovered on a volcanic neck lying about 20 km southeast of
Lord Howe in 2001) (Mikheyev et al., 2017; Priddel et al., 2003); (2) the
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Table 8.1 Impacts by alien vertebrate species that have caused declines in populations of Critically Endangered (CR) native insect species
(IUCN Red List 2022). Most of these impacts were reported on islands, where biodiversity is generally more vulnerable to anthropogenic
drivers, and especially to alien species, than on continents (Russell et al., 2017; Russell & Kueffer, 2019). Also, relatively few insect species
have been assessed on the IUCN Red list in comparison to some other taxonomic groups. This list is therefore unlikely to be complete.

Impacted native insect
species

Order of the native
insect species

Impacting invasive
alien vertebrate
species

Mechanism of
impact Location

Contributing
stressor(s)

Lord Howe horn-
headed stick-insect
(Cornicandovia
australica)

Phasmida Rats (Rattus spp.) Predation Lord Howe Island
(Australia)

e

Rentz’s strongstick-
insect (Davidrentzia
valida)

Phasmida Rats (Rattus spp.) Predation Lord Howe Island
(Australia)

e

Melliss’ hornless chafer
(Mellissius eudoxus)

Coleoptera House mouse (Mus
musculus)

Predation Hawaiian Island
(USA)

Invasive alien plants

Melliss’ dented chafer
(Mellissius oryctoides)

Coleoptera House mouse (Mus
musculus)

Predation Saint Helena Island
(UK)

Invasive alien plants

Ogasawara-aoitotombo
(Indolestes boninensis)

Odonata Caroline anole
(Anolis carolinensis)

Predation Japan Droughts (climate
change)

Bekko tombo (Libellula
angelina)

Odonata Basses (e.g.,
largemouth bass
Micropterus
salmoides) and trout

Predation Japan Habitat loss and
urbanization
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Chimanimani bluet
(Africallagma
cuneistigma)

Odonata Basses and trout Predation Zimbabwe Habitat loss and
alteration

Molokai damselfly
(Megalagrion
molokaiense)

Odonata Ungulates Habitat alteration Hawaiian Island
(USA)

Invasive alien ants

Flying earwig Hawaiian
damselfly (Megalagrion
nesiotes)

Odonata Ungulates Habitat alteration Hawaiian Island
(USA)

Droughts (climate
change)

Maui upland damselfly
(Megalagrion jugorum)

Odonata Ungulates Habitat alteration Hawaiian Island
(USA)

Invasive alien ants

From IUCN. (2022). The IUCN red list of threatened species (version 20222).
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great kiskadee (Pitangus sulphuratus) in Bermuda, a bird species which
contributed to the extinction of the Bermuda cicada (Tibicen bermudiana);
and (3) the red-whiskered bulbul (Pycnonotus jocosus) in Mauritius, which
is believed to have caused the extirpation of a species of golden silk orb-
weaver spider (Nephila sp.). Rats are thought to be responsible for the extir-
pation of many other invertebrate species on Lord Howe Island, such as the
cockroach Panesthia lata (Hutton et al., 2007), although this species has
recently been rediscovered on the island following a rat eradication program
(Lo, 2023). More often, however, the impacts of alien vertebrates on native
insects are only inferred or poorly investigated.

In this chapter, we review published information on the negative impacts
of alien vertebrate species on native insect species in order to broadly explore
whether alien vertebrates might be a contributing factor to global insect
decline.We also report cases of known or presumed positive impacts in order
to provide a more complete picture of the multiple changes caused by alien
vertebrates on native insects. To gather this information, we conducted an
online literature review (Google Scholar and Web of Science) using a search
string that combined words associated with (1) alien vertebrate species (e.g.,
“alien,” “introduced,” “nonnative”), (2) native insect population abundance
(e.g., “insect,” “decline,” “reduction,” “abundance”), and (3) class-specific
terms (e.g., “reptile,” “tortoise,” “lizard,” “squamata” or “snake” for rep-
tiles). Our aim was not to conduct an exhaustive systematic review but
rather a critical exploration of the available literature regarding the topic.
For each class of vertebrates, we provide a succinct overview regarding their
introduction history and a summary of their direct and indirect impacts on
native insect species. We define direct impacts as those involving direct in-
teractions between an alien vertebrate species and an impacted native insect
species (e.g., predation of a native beetle species by an alien amphibian spe-
cies). We define indirect impacts as those occurring as a result of modifica-
tions to the environment caused by an alien vertebrate species which have
consequences for native insect species (e.g., reduced availability of habitat
for an insect species as a result of grazing by an alien lagomorph species,
or increased/decreased in predation pressure on an insect species through
changes to a predator regime caused by alien vertebrates; Fig. 8.1).

The main direct and indirect mechanisms through which each class of
vertebrates impacts native insect species are summarized in Fig. 8.1. In the
past, many vertebrate species have been introduced to areas outside their
native range as biological agents in attempts to control insect “pest” species
(e.g., pests to human health or agriculture)dwe provide an overview of
some of these introductions in Box 8.1.
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Figure 8.1 Major reported mechanisms through which different groups of alien verte-
brate species (mammals, amphibians, reptiles, fishes, and birds) impact native insect
species. Direct mechanisms (solid arrows) are for predation only, while indirect mech-
anisms (dotted arrows) include habitat modification, regime shift of predators, and
change in native predator communities. Minus and plus signs indicate direction of
overall impact (negative and positive), while a question mark (?) indicates that the
magnitude or direction of any reported impacts associated with this mechanism has
been hypothesized but not demonstrated. More details on the represented impacts
can be found in the different sections of this chapter. Under certain circumstances,
the same alien vertebrate species can have negative impacts on some native insect
species and positive impacts on others, for instance, by altering nutrient availability.
Organism silhouettes were illustrated by Christoph Schomburg, Kamil S. Jaron, Birgit
Lang, Michael Keesey, Christoph Schomburg, Michael Day, David Maas, Andy Wilson, Brian
Bourke, Kamil S. Jaron, Sean McCann, Margot Michaud, Steven Traver, Will Booker, Alex-
andra van der Geer, Ferran Sayol, Sam Jones, Margot Michaud, Christoph Schomburg, Alex
Slavenko, Beth Reinke, Timothy Knepp, Carlos Cano-Barbacil, and submitted to PhyloPic
(www.phylopic.org). They are available for reuse under Public Domain Dedication 1.0
license (https://creativecommons.org/publicdomain/zero/1.0/).
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Box 8.1 Choice examples of alien vertebrate species introduced
to control insect pests and impacting native populations of
insects

Mosquitofish and guppies
The use of larvivorous fishes to control mosquito larvae to ultimately reduce ma-
laria transmission to humans has been long established as a complementary or
alternative approach to chemical treatments (Subramaniam et al., 2015; Walshe
et al., 2017). Species of the Poeciliidae family have been used widely for this,
particularly those belonging to the Gambusia and Poecilia genera. Gambusia affi-
nis and Gambusia holbrooki (generally referred to as “mosquitofish,” Fig. 8.2) have
been introduced into at least 113 countries from their native range in eastern
North America (Pyke, 2008). Early studies had suggested that Gambusia spp. pre-
date heavily on mosquito larvae (e.g. Howard, 1901, 1910), and should hence be
used as biocontrol agents (Phillipps, 1930), with anecdotal evidence suggesting
they successfully reduced larval abundances, but with their effectiveness
reduced in the presence of aquatic vegetation (Moore, 1922; Seale, 1917). Empir-
ical studies have, however, often been hampered by small sample sizes and inad-
equate experimental designs (Pyke, 2008). Where more robust studies have been
completed (e.g., randomly assigned treatments and appropriate sample sizes),
Gambusia spp. have rarely been shown to be effective biocontrol agents, with
both Kramer et al. (1987) and Blaustein (1992) detecting that differences in mos-
quito larvae abundance in ponds with and without Gambusia were nonsignifi-
cant. They instead suggested that Gambusia depressed abundances of
notonectids that prey on mosquito larvae, with this resulting in a neutral effect.
Other studies have suggested an indirect enhancement of mosquito populations
by alien Gambusia (Hurlbert & Mulla, 1981), with some studies also indicating
that mosquito larvae are actually only a minor dietary component of these fishes
(Pyke, 2008). North American mosquitoes have also been shown to choose
oviposition sites in which G. affinis is absent (Angelon & Petranka, 2002).
Although this may have further limited the capacity of the species to act as an
effective biocontrol agent against mosquitoes, it is unknown whether and
how native insect species expressing a similar avoidance behavior might be
affected by introduced Gambusia at the population level. Similar considerations
apply to species of the genus Poecilia, and especially to guppies (Poecilia reticu-
lata), which have been introduced from South America to about 30 tropical
countries in the Americas, Africa, Asia, and Australia. The efficacy of guppies in
controlling mosquitoes remains largely unproven and has been questioned
several times (Azevedo-Santos et al., 2017).

Figure 8.2 Mosquitofish Gambusia holbrooki. Image (mosquitofish) courtesy of
Smithsonian Environmental Research Center.
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Box 8.1 Choice examples of alien vertebrate species introduced
to control insect pests and impacting native populations of
insects (cont'd )
True toads
Many true toads (i.e.,membersof the familyBufonidae)were introducedasbiocon-
trol agents in the 1930s to the 1960s, including Anaxyrus americanus, Anaxyrus
boreas, Bufo gargarizans, Rhinella marina, and Sclerophrys gutturalis (Kraus,
2009). Of these, the cane toad R. marina (Fig. 8.3) was by far the most popular be-
ing introduced to more than 40 countries across the world (Lever, 2001). The prin-
cipal target for these putative biocontrol agents was cane beetles, a
miscellaneous group of Coleoptera that attacked the roots and/or leaves of sugar
cane grown in various tropical locations across the globe. Cane toads were
initially introduced because they were large, and as toads had been traditionally
used in the gardens of French colonists to control garden pests. Without any ev-
idence of their success, they were sequentially introduced to cane plantations
worldwide (Lever, 2001). Although cane toads doubtless consumed some of
the target beetle pests, in Australia they also consumed nontarget native insects
at least some of which would have also been controlling cane beetle pests (Shine
et al., 2020). But due to the broad diet of the toads, the limited consumption of
those insects would have hardly had any impact on their populations to achieve
the desired control. Moreover, cane toads as mesopredators were fed upon by
apex predators that had themselves been controlling cane beetles (Shine et al.,
2020). These Australian apex predators were naive to the toxins of the toads
and the toads led directly to their population crashes in many areas where
they were introduced. Lastly, other crop pests such as invasive alien rats, which
are known to feed on insects, were not naive to toads’ toxins, and likely benefited
from eating this additional prey source (Shine et al., 2020). Hence, the introduc-
tion of cane toads to Australia, and most other locations, was an ecological
disaster and did not result in any reduction in the target cane beetle pests.

Birds
Many bird species have been introduced to regions outside their native range in
attempts to control insects. Just a few examples are provided here, some of
which are taken from the comprehensive book on alien bird introductions pro-
duced by Christopher Lever (Lever, 2005). One of the earliest documented

(Continued)

Figure 8.3 Cane toad Rhinella marina. Image (cane toad) courtesy of Sam Fraser-
Smith.



Box 8.1 Choice examples of alien vertebrate species introduced
to control insect pests and impacting native populations of
insects (cont'd )
examples is the introduction of the common myna (Acridotheres tristis) to
Mauritius in 1762 in an attempt to control insect pests (Lever, 2005). The first re-
cord of the many house sparrow (Passer domesticus) introductions to the United
States of America is from 1851. The aim of this introduction was to reduce the
abundance of snow-white linden moth (Ennomos subsignarius) larvae which
were defoliating trees in New York State (Barrows, 1889). Just over a decade later,
from 1862 to 1883, more than 650 European starlings (Sturnus vulgaris) (Fig. 8.4)
were released on New Zealand by acclimatization societies trying to reduce the
abundance of insect pests (Lever, 2003). House sparrows were also introduced to
New Zealand from 1859 to 1869 in order to control caterpillars and insects in the
grain fields of the South Island and the orchards of the North Island (Thomson,
1922). In 1903, house sparrows were also introduced to Brazil where it was hoped
they would eat caterpillars damaging ornamental shrubs in Rio de Janeiro
(Summers-Smith, 1963). Also in 1903, the house crow (Corvus splendens) was
introduced to Selangor, Malaysia, with the aim of controlling caterpillars that
were damaging crops (Willey et al., 1903). The Japanese bush warbler (Cettia
diphone) was introduced to Oahu, Hawaii, in 1929 to control insects (Caum,
1933) and in 1950, the cattle egret (Bubulcus ibis) was also introduced to Hawaii
in an attempt to control flies damaging the hides of cattle (Breese, 1959). Unfor-
tunately, while these bird species may consume insect pests, in some cases, they
adversely affect other native species. For example, the common myna has been
observed destroying eggs and killing chicks of the endemic Seychelles magpie
robin (Copsychus sechellarum) in the Seychelles (Feare et al., 2017). The unwanted
impacts of the common myna and other alien bird species have resulted in ef-
forts on many islands to control and eradicate them (Spatz et al., 2022). Success-
ful common myna eradications on Denis and North Island in the Seychelles
(Feare et al., 2017, 2021) have benefited several endemic bird species including
the Seychelles paradise flycatcher (Terpsiphone corvina) (Feare et al., 2022).

Figure 8.4 Common starling Sturnus vulgaris. Image (common starling) courtesy of
Marie-Lan Taÿ Pamart. Images available from Wikimedia Commons (http://commons.
wikimedia.org) under Creative Commons Attribution license CC-BY 2.0 (https://creative
commons.org/licenses/by/2.0/) and 4.0 (https://creativecommons.org/licenses/by/4.0/).
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Alien fishes

History of introductions
Fishes are one of the most introduced vertebrate taxa globally due to

their widespread use in aquaculture, recreational angling, and the orna-
mental fish trade (Gozlan, Britton, et al., 2010). At least 745 species of strictly
freshwater fishes and diadromous fishes (i.e., fishes migrating between fresh-
water and marine environments) have established alien populations
following their introduction into new ranges (Tedesco et al., 2017). Since
to our knowledge, no study has quantified the number of alien oceanodro-
mous fishes (i.e., fishes spending their whole life in salt water) at the global
level and their impact on native insect populations is mostly unknownd
possibly because only a small minority of insect species are associated to
salt water (Cheng, 2009)dwe do not consider these fishes from hereon.

Direct impacts
Although some alien fish species remain insectivorous throughout life, such
as many nonmigratory species of the family Salmonidae (including their
invasive populations) (Lepori et al., 2012), many species are only insectivo-
rous in their juvenile life stages. For example, the juveniles of many pisciv-
orous alien fishes tend to prey upon macroinvertebratesdincluding insect
larvaedsuch as largemouth bass Micropterus salmoides (Hickley et al.,
1994), Northern pike Esox lucius (Cathcart et al., 2019), and European cat-
fish Silurus glanis (Copp et al., 2009). In these species, individuals shift from
macroinvertebrates to fish prey as their body and gape sizes increase (Britton,
Davies, & Harrod, 2010). However, even in their juvenile life stages, the
population sizes of these alien piscivores can be relatively small and so their
ability to directly affect insect abundance and diversity could be limited.

The primary mechanism by which insect populations could be directly
impacted by alien fish is through predation, especially of their larval and pu-
pal stages that reside in freshwater. Indeed, many highly invasive, small-
bodied alien fishes have diets comprising of high proportions of insect larvae
which, when coupled with their often abundant invasive populations,
potentially result in high predation pressure on insect larvae and pupa (Brit-
ton, Harper, et al., 2010). For example, the Asian fish topmouth gudgeon
Pseudorasbora parva has now established populations in at least 32 countries
in Europe and its small size (<100 mm in length) means individuals are
limited to consuming relatively small prey items (Gozlan, Andreou, et al.,
2010). Studies indicate some populations have strong dietary preferences
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for chironomid (nonbiting midge) larvae (Declerck, 2002; Wolfram-Wais
et al., 1999). The North American pumpkinseed Lepomis gibbosus has also
established populations in many European countries and these can also
have diets that are chironomid dominated (Godinho et al., 1997; Godinho
& Ferreira, 1998).

For both P. parva and L. gibbosus, however, there is little empirical evi-
dence suggesting their direct predation pressure affects insect diversity and
abundance. For example, an experimental study that excluded predatory
fishesdincluding the invasive pumpkinseeddfrom a marsh weedbed to
evaluate their impacts on insect larvae revealed that although these fishes
consumed large numbers of chironomid larvae, fish exclusion did not result
in increased chironomid abundance (Batzer et al., 2000). Instead, popula-
tions of midge competitor and predator species that had previously been
suppressed by fish were now acting to suppress the chironomid larvae.
Moreover, mosquito fishes of the genus Gambusia have been introduced
around the world as biocontrol agents to reduce local mosquito larvae abun-
dances to eventually reduce malaria transmission rates. However, the direct
effect of these alien introductions on mosquito populations remains equiv-
ocal at best (see Box 8.1). Conversely, direct impacts on insect abundance
through predation have been shown to result from the introduction of alien
trout species. For example, in the Sierra Nevada Mountains, California,
comparisons of lakes that were fishless versus those where a range of alien
trout species had been introduced revealed that lakes with trout had 98%
fewer mayflies, due to trout predation during mayfly emergence, leading
also to reductions in insect prey availability for local birds (Epanchin et al.,
2010). Thus, direct predation impacts of alien fishes on aquatic life stages
of terrestrial insects appear to be context dependent, with general patterns
of impact not being evident.

Indirect impacts
Strong indirect effects of alien fish on insect abundance and diversity have
been measured, where the mechanism is usually via perturbations to habitat
structure resulting from alien species that act as ecosystem engineers such as
common carp Cyprinus carpio (Vilizzi et al., 2015). Miller and Crowl (2006)
experimentally revealed that invasive common carp can indirectly affect the
macroinvertebrate community composition, including significantly
decreasing chironomid abundance, via reducing directly macrophyte species
abundance and changing their composition. Similar indirect and negative ef-
fects of invasive carp on macroinvertebrate abundance and diversity have
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also been reported in empirical studies and reviews (Vilizzi et al., 2015;
Weber & Brown, 2009). A further indirect effect is through the disruption
by alien fish of the direct reciprocal prey subsidies that occur between terres-
trial and freshwater ecosystems. These comprise terrestrial invertebrates
(mainly insects) that fall into streams and become available as prey for fish,
and the reciprocal flow of adult aquatic insects that emerge from freshwater
and provide prey for riparian consumers, such as birds and spiders (Baxter
et al., 2005). Alien fish invasions can alter the characteristics and/or fate of
these subsidies, as demonstrated by alien rainbow trout Oncorhynchus mykiss
(Baxter et al., 2007). In Japan, these trout interrupted the reciprocal flows of
invertebrate prey that drove stream and adjacent riparian forest food webs, as
their predation upon fallen terrestrial prey in the stream resulted in a
native charr species having to switch to consuming benthic grazing insects
(Baxter et al., 2007). The net result of these dietary shifts was reduced graz-
ing insect abundance leading to increased algal biomass and decreased
biomass of adult aquatic insects emerging from the stream into the forest
(Baxter et al., 2007). Also, in the mountain lakes of Sierra Nevada (USA),
insect emergence rates were nearly 20-fold higher in fishless lakes versus
nearby lakes with alien trout species present, which reduced insect prey
for native amphibious and terrestrial consumers, including insects
(Finlay & Vredenburg, 2007). Correspondingly, these examples of alien
carp and trout suggest that the strongest effects of alien fishes on insect abun-
dance and diversity are likely to manifest through indirect effects.

Alien amphibians

History of introductions
Amphibians were deliberately introduced to nonnative areas to be

used as biocontrol agents against cane beetle pests and mosquitoes or as
duck food (Measey et al., 2017; Shine et al., 2020). Several large ranids
have been moved to novel areas for aquaculture production and human
consumption of frogs’ legs and have subsequently escaped or been released
(Kraus, 2009). While these two pathways have produced many of the histor-
ical and repeated invasions, they have largely ceased, while the two
increasing pathways are through accidental introductions of adults (especially
through horticulture) or larvae (in aquaculture) and the ever-increasing pet
trade (Kraus, 2009; Mohanty & Measey, 2019).

In comparison with alien fish, the number of established alien amphib-
ians globally is relatively small (105e124 species depending on the source)
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(Capinha et al., 2017; Measey et al., 2016; Measey, Wagener, et al., 2020).
Their impacts as a group have been assessed using the Environmental Impact
Classification for Alien Taxa (EICAT) (Blackburn et al., 2014; IUCN,
2020), and two consecutive assessment exercises suggest that there are no re-
ports in the literature of significant impacts of alien amphibians to insect
populations (Kumschick et al., 2017; Measey et al., 2020). This is despite re-
ports on predation dominating the literature on impact, and many of these
showing high levels of predation on insects (Measey et al., 2016). However,
it cannot be concluded that population-level impacts do not exist, just that
studies have not specifically investigated impacts on insect populations.

Adult amphibians are generally described as generalist predators of ar-
thropods, of which insects make up the largest proportion of prey items
for the majority of species. Dietary specialization does occur, and frequently
toward social insects, i.e., ants and termites (Herrel et al., 2019; Toft, 1981).
The key role of amphibians in ecosystems is particularly evident when they
occur in high densities, i.e., when they account for a considerable propor-
tion of the energy flow in studied systems (Burton & Likens, 1975; Regester
et al., 2006; Stewart & Woolbright, 1996), many species being sufficiently
small and numerous to be both important predators of, and prey for insects.

The majority of amphibian species have larval stages in aquatic environ-
ments where their densities can become extremely high (Hero et al., 1998),
and therefore become important prey for a diversity of predatory aquatic in-
sects. Given their importance in nutrient cycling, it might be expected that
alien invasive amphibians will have the most marked impacts on island sys-
tems from where they were previously absent (Beard, 2007; see below), and
that this may result in a net benefit to many (especially aquatic) native insects
that may then prey upon them (Valdez, 2020).

Direct impacts
The cane toad, Rhinella marina, one of the most widely introduced
amphibian species in an attemptdwhich proved to be futiledto be used
as an agent for biological control, mostly predates on terrestrial insects
(Box 8.1). Cane toad invasive populations have been very well studied in
Australia. There, native mesopredators are unused to the toxic nature of
cane toad adults and larvae as prey, and either decline through morbidity,
or switch prey. Doody et al. (2017) document many native predatory spe-
cies, among which several insectivorous lizards and snakes have declined
following the invasion of cane toads in tropical Australia. In some cases,
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the loss of primary native predators that died after consuming cane toads has
resulted in a trophic cascade in the system (Doody et al., 2015), although
studies have not assessed the impact on insect populations. Nelson et al.
(2010) found that, in a laboratory experiment, northern trout gudgeon,
Mogurnda mogurnda, learned to avoid toxic toad tadpoles, but then switched
to native insect prey instead of consuming native tadpoles. Although direct
and indirect impacts of invasive cane toads on native insects are therefore
possible, no change in native invertebrate populations has been recorded
yet. Since the impacts of cane toads in Australia have been particularly severe
on native vertebrate predators due to the absence of other toxic amphibian
prey in their ecosystem, it is currently unknown whether similar consider-
ations might apply to invertebrate predators. Similar concerns should be
raised about the recent invasion and spread of the Asian spiny toad, Duttaph-
rynus melanostictus, in Madagascar and the islands of Wallacea, another biodi-
versity hotspot without an evolutionary association with toxic toads (Licata
et al., 2019; Marshall et al., 2018; Reilly et al., 2017).

The African clawed frog, Xenopus laevis, is principally aquatic and a vora-
cious predator of aquatic insects, as well as most other available aquatic prey
(Courant et al., 2017; Measey, 1998). Invaded aquatic habitats harbor signif-
icantly less nektonic macroinvertebrates, Coleoptera, Hemiptera, and Odo-
nata, which appear to be eaten preferentially when these amphibians first
arrive in ponds (Courant et al., 2018). Studies on already invaded habitats
suggest that after consuming nektonic species, these frogs switch to preda-
tion on benthic invertebrate fauna and zooplankton (Courant et al.,
2017), suggesting a more permanent impact on the nektonic insect commu-
nity. However, this has not been corroborated by entomological
population-focused studies.

Indirect impacts
The coqui frog, Eleutherodactylus coqui, is native to Puerto Rico, and invasive
in many islands in the Caribbean, Central and South America, and the
United States of America: Florida, California, and the Hawaiian Islands
(Beard et al., 2008). In both native and invasive populations, this frog reaches
extremely high densities in forested habitats: up to 91,000 frogs/ha (Beard,
2007; Beard et al., 2008). In Hawaii, coqui frogs consume large quantities of
invasive and native leaf litter invertebrates (Beard & Pitt, 2005) and can
reduce invertebrate communities through predation (Sin et al., 2008). Die-
tary analyses indicate that these frogs have a positive selection toward
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invasive species, and away from natives (Beard, 2007). However, larger im-
pacts to native insects on Hawaii are thought to occur by changes in nutrient
cycling (Sin et al., 2008). Coqui excretions increase nutrient availability to
plants and microbes responsible for decomposing leaf litter. Both processes
resulted in increased nutrient availability and plant growth on the
nutrient-poor soils of Hawaii, potentially conferring an advantage to inva-
sive nutrient-loving plants and thereby changing the forest ecosystem (Sin
et al., 2008). Despite invasive populations of this species being also wide-
spread elsewhere, including many other island ecosystems, other studies of
impacts on invertebrate or plant communities are unknown.

Alien reptiles

History of introductions
Reptiles, comprising lizards, snakes, crocodiles, and turtles, have been

introduced all over the world with increasing frequency (Seebens et al.,
2017), so much so that, 847 reptile species have been recorded as introduced
beyond their native ranges (van Wilgen et al., 2018) and approximately 200
species have successfully established (Dawson et al., 2017; Kraus, 2009). His-
torically, lizards and snakes have been introduced primarily as stowaways in
trade, with the pet trade being mainly responsible for freshwater turtle intro-
ductions (Kraus, 2009). However, the volume and extent of the pet trade is
likely to make it a major source for nonnative reptiles in the future (Lock-
wood et al., 2019). Remarkably, reptiles are not typically introduced for in-
sect biocontrol, in contrast to frogs (Kraus, 2009). Among all alien reptiles,
species with “fast” life-history traits such as large and frequent clutches (Allen
et al., 2017), introduced with high propagule pressure and to areas that are
climatically similar to their native ranges (Mahoney et al., 2015), have been
successful in establishing and spreading in the introduced areas. The most
likely way in which invasive reptiles may impact insect communities is via
predation, although indirect effects such as trophic cascades also need to
be considered.

Direct impacts
The majority of modern reptiles are carnivorous (Stevens & Hume, 2004),
and while they can feed on a wide variety of prey ranging from large ungu-
lates to the smallest invertebrates, many prey exclusively or primarily on in-
sects (Vitt et al., 2003). Unsurprisingly, therefore, a great number of studies
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have documented invasive reptiles preying on native insects, although evi-
dence of population level impacts is available only in a few instances. The
brown anole Anolis sagrei, a widespread invader, has been suggested to be
responsible for shifts in ant community structure in Taiwan (Huang et al.,
2008). Only a few years after its initial introduction to Taiwan (ca. 2000),
diet composition analyses revealed that the diet of this lizard consisted
mainly of insects (90%), among which the native ant Pheidole fervens was
most consumed (Huang et al., 2008). Experimental manipulation of lizard
density demonstrated a substantial reduction in diversity but not overall
abundance of ants, driven by a decline in the native ant P. fervens. A
congener of this lizard, Anolis carolinensis, which was introduced from the
Southeastern United States of America to Japan, has been shown to have
caused a drastic decline in at least three species of native longicorn beetles
on Ogasawara Islands, Japan (Makihara et al., 2004). Notably, this study
was conducted “before and after” invasive lizard proliferation, a study design
considered robust for detecting population-level impacts (Christie et al.,
2019). Although other studies have indicated a potential impact of invasive
reptiles on native insects, robust evidence on declines in native insect pop-
ulations is absent.

Diet studies on several invasive reptiles have recorded substantial preda-
tion on native insects. For example, Jackson’s chameleon Chamaeleo jacksonii
on Hawaii feeds on endemic insects, including leafhoppers Nesophrosyne and
Oliarus (Holland et al., 2010; Kraus et al., 2012). Notably, these chameleons
were recorded feeding on a large number of preys per occasion (41.8 dietary
items/lizard, ranging from 0 to 352) (Kraus et al., 2012) and also consumed
relatively large species (e.g., Blackburn’s Hawaiian damselfly Megalagrion
blackburni), which indicates a substantial predation pressure across size classes
of insects. Another successful global invader, the common garden lizard
Calotes versicolor, feeds on endemic insects on the Andaman Islands (Nitya
Prakash Mohanty, unpublished data). An invasive population of the red-
headed agama Agama picticauda in Florida (USA) has also led to concerns
of impact on endemic butterflies, although these impacts are likely to be
limited to human habitations (Gioeli & Johnson, 2020).

Indirect impacts
The introduction of the brown tree snake Boiga irregularis to Guam (USA)
and the consequent extirpation of native insectivorous birds has been well
documented (Rodda et al., 1999). However, what this means for insect
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assemblages is less understood. Native spiders were shown to increase in
abundance following the decline of birds (Fritts & Rodda, 1998). Recently,
Freedman and colleagues (Freedman et al., 2018) showed an increase in
native honeydew producing insects and associated native ant densities in
Guam as compared to uninvaded islands. Indirect positive and negative im-
pacts of other large, bird-eating reptile invasions (e.g., Burmese python Py-
thon molurus subsp. bivittatus in Florida) are yet to be examined.

Alien birds

History of introductions
Many bird species have been introduced to locations across the globe

where they would not naturally occur (Lever, 2005; Long, 1981) and
although not all these introductions have been successful, there are at least
362 bird species with self-sustaining alien populations worldwide (Dyer
et al., 2017). These introductions have occurred for a range of reasons. Eu-
ropean colonists established acclimatization societies in countries such as
Australia and New Zealand, which introduced species from Europe such
as the common starling (Sturnus vulgaris) with the aim of improving the envi-
ronment (Lever, 2003). Birds have also been introduced to new locations in
attempts to control other pest species, such as the barn owl (Tyto alba), which
was introduced to the Seychelles to control alien rats (Skerret et al., 2001),
and the common myna (Acridotheres tristis) which was introduced to the
Cook Islands to control insect pests (McCormack, 2005) (see Box 8.1).
Bird species have also been introduced to be used as a source of food and
for hunting (Carpio et al., 2017), and caged birds kept as pets have been acci-
dently or deliberately released into new environments, including for reli-
gious reasons (e.g., prayer releases of species such as the common myna in
Taiwan) (Severinghaus & Chi, 1999).

Direct impacts
Many of the reported environmental impacts of alien birds are incurred by
native bird species (Baker et al., 2014; Evans, 2021; Evans et al., 2021;
Martin-Albarracin et al., 2015). However, alien birds also affect native spe-
cies from other taxonomic groups, including insects. Indeed, many avian
families feed regularly upon insects, and some feed exclusively or primarily
upon them (Morse, 1975). Thus, the most frequently recorded impact of
alien birds on native insects is through predation. For example, the little
owl (Athene noctua) is a recognized threat to the existence of the Critically
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Endangered Cromwell chafer beetle (Prodontria lewisii) in New Zealand
(Watt, 1979). Little owl castings have been found to comprise on average
10% Cromwell chafer beetle remains. Nevertheless, whether this predation
is causing a decline in the population of the beetle remains unknown
(Barratt, 2007). The smooth-billed ani (Crotophaga ani) feeds on endemic in-
sect species on the Gal�apagos Islands, including the Gal�apagos green hawk-
moth (Eumorpha labruscae subsp. yupanquii), large painted locust (Schistocerca
melanocera), and Gal�apagos flightless grasshopper (Halemus robustus) (Connett
et al., 2016; Cooke et al., 2019, 2020). The impacts of alien birds can be
particularly severe on small islands (Evans, 2021; Evans et al., 2021). For
example, predation by the smooth-billed ani may be having a serious impact
on several native butterfly and moth (Lepidoptera) species and the Gal�apagos
carpenter bee (Xylocopa darwini), which is the only native bee species on the
Gal�apagos and a key pollinator (Cooke et al., 2020). The invasive red-
vented bulbul (Pycnonotus cafer) and red-whiskered bulbul (Pycnonotus jocosus)
prey on the native monarch butterfly (Danaus plexippus subsp. plexippus) on
Oahu (Hawaii). Their preference for the orange morph over the white
morph of the butterfly has caused a decline in the proportion of the orange
morph within the monarch butterfly population on Oahu (Stimson & Ber-
man, 1990). This decline, which meant that fewer orange morph individuals
were available to feed on, is also believed to have resulted in a change in the
behavior of the alien bird species, which switched from predation of mon-
arch butterfly adults to larvae (Stimson & Kasuya, 2000). Two of the most
severe impacts on insects caused by alien bird predation are historical and
based on anecdotal evidence alone. The red-whiskered bulbul is believed
to have caused the extirpation of a species of large spider (genus Nephila)
on Mauritius (Islam & Williams, 2000) and the great kiskadee
(P. sulphuratus) is believed to have contributed to the extinction of the
Bermuda cicada (Tibicen bermudiana) on Bermuda (DENR, 2023a).

While the impacts caused by alien birds may be damaging, in all of the
above examples there is no empirical evidence to demonstrate that predation
is causing declines in the populations of native insect species (impacts cate-
gorized as “harmful” under EICAT) (Blackburn et al., 2014; IUCN, 2020).
Indeed, as far as we are aware, there are no such examples based on empirical
evidence in the literature. More research is needed to confirm population
level impacts, particularly where these alien birds may be preying on
endemic, threatened, or range-restricted insect species (such as predation
of the Gal�apagos carpenter bee by the smooth-billed ani on the Gal�apagos
Islands) (Cooke et al., 2020). Furthermore, alien populations of bird species
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that consume insects are broadly distributed around the world (Evans et al.,
2016). While some studies of their diets have identified the types of insect
species they consume (e.g., the dietary preferences of California quail Calli-
pepla californica in Kaingaroa State Forest in New Zealand) (Caithness et al.,
1989), little is known on how predation by these alien birds affects the long-
term survival of native insect species (Evans, Kumschick, et al., 2018; Evans,
Pigot, et al., 2018).

Indirect impacts
Some alien bird species spread the seeds of alien plants, which facilitates alien
plant invasions. Alien birds can therefore have indirect impacts on insects, as
alien plant invasions can change the structure of plant communities and the
insect communities associated with them. For example in the Azores, the
alien European goldfinch (Carduelis carduelis) has facilitated plant invasions,
resulting in the replacement of large insects (associated with native plants)
with small insects (associated with alien plants), causing a decline in insect
biomass and a reversal in the expected pattern of insect species-richness
decline with elevation (Heleno, 2008). A 67% decrease in insect productiv-
ity is predicted if conservation efforts fail to halt alien plant invasions on the
Azores (Heleno et al., 2009). There are other examples of alien plant inva-
sions facilitated by alien birds but where the indirect impacts on insects have
not been assessed. In South Africa’s Cape Floristic Region, frugivorous alien
bird species such as the common starling (S. vulgaris) spread the seeds of alien
shrub species such as Victorian box (Pittosporum undulatum) (Mokotjomela
et al., 2013). On Reunion Island, the red-whiskered bulbul spreads the seeds
of several alien fleshy-fruited plants such as giant bramble (Rubus alceifolius)
(Mandon-Dalger et al., 2004). Nevertheless, the impacts of these alien plant
invasions on native insects may be positive and/or negative. For example,
alien plants can provide a food resource for pollinating insects (Drossart
et al., 2017), but the nectar of some alien plant species can be toxic to these
pollinators (Tiedeken et al., 2016).

Alien mammals

History of introductions
Mammals have been intentionally introduced outside their historical

native ranges for hunting activities, fauna improvement, and under conser-
vation programs (Long, 2003). Intentional introductions of alien mammal
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species have also been conducted to control insect pests. For example, the
wild boar Sus scrofa was deliberately introduced to South Africa as biological
control against the effects of the larvae of the sphingid moth Nudaurelia cyth-
erea (Emperor Pine Moth) in pine plantations (Measey, Hui, & Somers,
2020). Accidental releases of alien mammals were also recorded, where spe-
cies used in the pet trade or fur markets escaped captivity or were released by
pet owners and fur farmers into the wild and established alien populations.
Many small-bodied species of mammals, such as rats and shrews, have also
been unintentionally transported as contaminants of goods or as stowaways
on vehicles such as ships or trucks. Overall, 230 species of mammals have
established self-sustaining and free-ranging populations outside their native
range, with rodents (n ¼ 58), even-toed ungulates (n ¼ 49), and carnivorans
(n ¼ 30) as the most represented orders (Biancolini et al., 2021). Unlike
other terrestrial vertebrates, the number of new mammal taxa establishing
alien populations has declined in recent decades (Seebens et al., 2017).

Direct impacts
Alien carnivorans (i.e., Carnivora) such as the American mink (Neogale
vison), the red fox (Vulpes vulpes), the ferret (Mustela furo), and the prehis-
torically introduced dingo (Canis familiaris dingo) have been found to
prey on native insects belonging to various functional groups (Alterio &
Moller, 1997; Catling, 1988; Doherty, 2015; Krawczyk et al., 2013),
although their impacts at the population-level remain to be elucidated.
Particular attention has been given to the impact of one of the most wide-
spread alien carnivores on the planet, the feral cat (Felis catus), which has
been shown to include native insects in its diet on multiple occasions (Bon-
naud et al., 2007; Doherty, 2015; Medina & Nogales, 2009; Peck et al.,
2008). Concern has also been raised around the negative impacts that alien
mongooses such as the Small Indian Mongoose (Urva auropunctata) may
have on native insects, considering that these small-medium size carnivores
are characterized by a generalist diet and flexible behavior and prey on in-
sects (Fukuhara et al., 2010). Other alien predatory mammals that have
been shown to feed on native insects are, unsurprisingly, hedgehogs,
shrews, and other species previously belonging to the now-abandoned or-
der Insectivora (Brown et al., 2014; Clare, 2014; Jones & Norbury, 2011).
Special attention should be paid to the impact of alien rodents, especially
murids, on native insects. Mice and rats often exhibit a highly diverse
diet that includes arthropods, and stomach and fecal content records
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show that insects are routinely consumed by alien murids (Ceia et al., 2017;
Riofrío-Lazo & P�aez-Rosas, 2015; Shiels et al., 2013). Although most
studies did not investigate whether such predation had important conse-
quences at the population level, we consider that such investigation is sim-
ply not feasible in several cases. As most murid species have been accidently
introduced centuries ago to almost all parts of the planet, historical data
predating their arrival and documenting the local diversity and abundance
of native insects are simply unavailable. However, the recent and ongoing
removal of some murids from small islands may present opportunities for
beforeeafter comparisons. Similar considerations can be applied to the im-
pacts caused by many other mammals and vertebrates introduced in histor-
ical times. When available, specimens and records of native insects held
within natural history museums might represent an additional valuable
resource to reconstruct these historical impacts and assess the threat status
of native species (Connolly & Ward, 2020).

Indirect impacts
Introduced herbivores may indirectly impact insect populations by leading
to profound and ecosystem-wide modifications of vegetation or the disap-
pearance of specific host plants. For instance, introduced ungulates, like
deer (e.g., Cervus nippon, Dama dama, Odocoileus virginianus), cattle (Bos
taurus), wild boars (S. scrofa) or goats (Capra hircus), have been shown to
impact insect abundance and diversity through the changes they are causing
in plant composition or structure by intensively grazing, rooting, browsing,
or trampling (Gizicki et al., 2018; Taylor et al., 2011; V�azquez & Simberloff,
2003); see Spear & Chown (2009) and Volery et al. (2021) for reviews. The
introductions of alien rabbits and hares have also frequently resulted in
drastic vegetation changes (Allmert et al., 2022). For example, the vegeta-
tion stripping of Laysan Island (Hawaii) by domestic rabbits (Oryctolagus cuni-
culus subsp. domesticus) led to the extinction of many plant species and of their
associated insects, including endemic insect species (Wagner & Van Drie-
sche, 2010). Such vegetation modifications by introduced herbivores were
mainly reported to occur in forest ecosystems and to impact ground dwelling
insects or disrupt plantepollinator interaction networks (V�azquez & Sim-
berloff, 2003); they therefore mainly affected coleopterans, lepidopterans,
hymenopterans, dipterans, and heteropterans. Because introduced herbi-
vores are usually associated with drastic changes in vegetation, indirect im-
pacts on native insect abundance or diversity are expected to be frequent,
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and not restricted to terrestrial environments. For instance, alien aquatic ro-
dent species such as the coypu (Myocastor coypus) and the muskrat (Ondatra
zibethicus) were reported to significantly alter vegetation dynamics through
herbivory (Bertolino et al., 2005; Gethöffe & Siebert, 2020; Sarneel et al.,
2011), and intensive grazing from alien muskrats has been found to suppress
the abundance of large nektonic invertebrates, such as dytiscids and corixids
(Nummi et al., 2006). However, while indirect impacts of alien herbivores
are often highlighted, they are understudied compared to direct impacts
(Allmert et al., 2022; Nummi et al., 2006; Volery et al., 2021). Notably,
other impacts by alien herbivores, not related to their herbivory, have also
been reported: for example, wild boars were found to disturb riparian eco-
systems and to thereby affect aquatic insects and induce shifts toward
gastropod-dominated communities in Louisiana (Kaller & Kelso, 2006),
while dung of domesticated alien mammals attracts, and is likely used by,
generalist native dung beetles in New Zealand (Jones & Norbury, 2011; Sta-
vert et al., 2014). Introduced keystone species like the American beaver
(Castor canadensis) and the muskrat (O. zibethicus) are thought to impact
freshwater insects by constructing lodges and creating open water areas,
although the magnitude and direction of these impacts have been generally
assumed rather than specifically documented (Silva & Saavedra, 2008).
Finally, an emerging alien population of hippopotamus (Hippopotamus
amphibus) in Colombia has raised concern given the capacity of the species
to transfer large quantities of trophic resources from terrestrial to aquatic
ecosystems through defecation (Dawson et al., 2016). Yet, a recent study
by Shurin et al. (2020) has shown that alien hippos increase organic matter
and cyanobacteria in Colombian lakes but have no significant impact on
benthic invertebrates, including insects.

General remarks and conclusion

Our review suggests that alien vertebrate species can cause a wide
range of direct and indirect negative impacts on native insects. However,
most research to date has focused only on impacts affecting individuals of
a native insect species, often through the analysis of stomach, gut, and fecal
contents of alien vertebrates. Indeed, studies documenting negative impacts
on native insect populations and long-term studies that measure the effect of
these impacts on insect abundance and diversity are scarce. Furthermore, the
existence of mechanisms by which alien vertebrates may cause positive
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impacts on native insects, for instance by provoking changes in the regime of
insectivorous predators, has been occasionally hypothesized, although the
actual magnitude of these impacts has been rarely measured (Vimercati
et al., 2022). Thus, the population-level consequences of alien vertebrate
species on native insect species across the globe remain largely unexplored.
This gap in knowledge is likely due to challenges in drawing reliable infer-
ence about insect population trends not restricted to studies on alien verte-
brates. Key challenges are the complexity to estimate historical demographic
baselines and capture spatialetemporal trends, the presence of methodolog-
ical biases, the representativeness of site selection, and the need to account
for density dependence and scale-dependence in extrapolation from sample
abundance to population-level inference (Didham et al., 2020). To address
some of these challenges, we suggest that studies on the impacts of alien ver-
tebrates would benefit from employing exclusion and before/after experi-
ments (Christie et al., 2019). Unlike anthropogenic drivers that cannot be
easily reversed (such as climate change), alien vertebrates can be locally
controlled or even extirpated (Spatz et al., 2022), thus allowing robust infer-
ence on their population-level effects on native insects (Didham et al., 2009;
Schori et al., 2019).

Alien vertebrates are just one of the several drivers that affect native insect
abundance and diversity. Indeed, the negative impacts of invasive alien ver-
tebrates are often exacerbated by the presence of alien plants (see Chapter 5)
and alien invertebrates (see Chapters 6 and 7), or by other anthropogenic
stressors such as habitat loss, urbanization, and pollution (Habel et al.,
2019; Romero et al., 2021); see also Table 8.1. For example, in New Zea-
land, the Endangered Cromwell chafer beetle (Prodontria lewisii) is not only
preyed upon by introduced European hedgehogs (Erinaceus europaeus) and
little owls (Athene noctua) but also by introduced redback spiders (Latrodectus
hasselti), which construct their webs in burrows created by introduced Euro-
pean rabbits (Oryctolagus cuniculus) (Spencer et al., 2017). The disappearance
of the Bermuda cicada (Tibicen bermudiana) on Bermuda has been attributed
to predation by an alien bird (the great kiskadee), but also to the impacts of
an introduced scale insect which devastated populations of the host tree of
the Bermuda cicada (the Bermuda cedar; Juniperus bermudiana) (DENR,
2023a, 2023b). Recent studies have also detected an interactive deleterious
effect between the introduction of invasive vertebrates and urbanization.
Artificial light at night (ALAN), a key characteristic of urban spaces, serves
not only to attract insects in large numbers but extends the activity period
of several invasive reptiles into the night (Perry et al., 2008). Such
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instances of enhanced predation have been recorded in invasive populations
of geckos of the genera Phelsuma, Hemidactylus, and Lepidodactylus, often on
islands (Baxter-Gilbert et al., 2021; Perry et al., 2008). Intense consumption
of photophilic insects by introduced Hemidactylus frenatus under experi-
mental conditions (Canyon & Hii, 1997) indicates a substantial impact on
insect populations under ALAN-enhanced foraging. More population-
level studies are needed to explore to what extent interactions between
invasive vertebrates and other anthropogenic stressors play a role in global
insect decline (see Chapter 3). We suggest that these and other future
research studies on the impacts of alien vertebrates on native insects would
benefit from enhanced collaboration between entomologists and insect
ecologists, who are generally underrepresented among scientists interested
in vertebrate invasions.
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Introduction

Alien species are often accompanied by cointroduced microorganisms
that can spread and establish novel interactions with native species in the
introduced ranges (Daszak et al., 2000; Lymbery et al., 2014; McIntire &
Juliano, 2021). Despite their widespread presence and effects, pathogens
are often absent from studies investigating biological invasions (Hatcher
et al., 2012), which can result in an oversimplified perspective of study sys-
tems. Taking pathogens into account can improve our understanding of the
invasion process of alien species (Fincham et al., 2019). Insects, the most
abundant group of organisms on Earth, are constantly exposed to pathogens,
but due to their complex and efficient defense systems, only a few encoun-
ters result in infection (Gillespie et al., 1997). However, in recent years,
many authors have warned about a global decline in insect abundance and
diversity (Cardoso et al., 2020; Kehoe et al., 2021; S�anchez-Bayo &
Wyckhuys, 2019; Soares et al., 2023) and newly established interactions
of insects with pathogens (Vilcinskas, 2019), parasitoids (Ceryngier et al.,
2018; Knapp et al., 2019), and ectoparasitic microfungi (Haelewaters
et al., 2017) could play an important role in this decline.

Firstly, insects are being introduced into new biogeographic regions for a
variety of reasons such as ornamental or pet species, for medical reasons, for
mass rearing in insect farms to promote biological control, pollination, or silk
production (Kumschick et al., 2016). These introductions could favor the
cointroduction of microorganisms (Grau et al., 2017; Mallinger et al.,
2017; Pfliegler et al., 2018; Roy, Brown et al., 2008). Such an event has
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the potential to result in a “spillover” to wild insect populations (F€urst et al.,
2014), leading to diseases that can affect entire ecosystems (Daszak et al.,
2000; Strauss et al., 2012). Second, the immunological traits of invasive in-
sects allow them to resist native insect pathogens in the introduced ranges
(Lee & Klasing, 2004), mainly due to their ability to produce strong antimi-
crobial defenses (Vilcinskas et al., 2013). For this reason, disciplines such as
invasion biology and insect pathology should go hand in hand, especially
if we focus on emerging infectious diseases. For this reason, disciplines
such as invasion biology and insect pathology should go hand in hand, espe-
cially if we focus on emerging infectious diseases.

Cointroduced insect pathogens generally belong to various groups of
microorganisms such as bacteria, fungi, microsporidia, protozoa, and viruses
(Kaya & Vega, 2012). They are often omitted compared to other antago-
nistic organisms, such as parasitoids and predators, because they are more
difficult to detect, and their effects are not easy to quantify (Solter, 2014).
These antagonist pathogens are assumed to play key functional roles through
lethal (causing host population declines) and sublethal effects (reducing
movement ability and fertility of their hosts and increasing their vulnerability
to predators) (Dunn & Hatcher, 2015; Solter et al., 2012). This means that
some cointroduced insect pathogens may cause high mortality of their hosts,
associated with conspicuous symptoms and often resulting in epidemic out-
bursts (Roy et al., 2006), while others cause neither direct mortality nor
chronic prolonged or asymptomatic infections (Lange & Lord, 2012). For
example, pathogens can change the susceptibility of native hosts to infection
by other pathogens by altering their immunocompetence, or by affecting
their exposure or resistance to diseases caused by other pathogens (Poulin
et al., 2011).

Pathogens have occasionally been considered responsible for the popu-
lation declines of naturalized alien species (Blackburn & Ewen, 2017). How-
ever, naturalized alien species can also function as reservoirs of native
pathogens that are often hosted by native organisms closely associated
with congeneric invaders (Amsellem et al., 2017). These pathogens can
affect alien species by acting as synergists or antagonists, thereby impacting
ecosystem functioning by changing species interactions (Chalkowski et al.,
2018). From an ecological point of view, this is of special interest for hoste
pathogen interactions between invasive alien species and coinvasive patho-
gens, which are key for determining the impacts and success of invaders
(Fincham et al., 2019). The success of introduced insects can be profoundly
influenced by a variety of microorganisms, which can play critical roles in
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colonizing new habitats (Amsellem et al., 2017). For example, disease-
mediated invasions have important implications for understanding the
spread of some invasive insects, as they can modify the impacts of invaders
(Broadley et al., 2017; Roy et al., 2016; Vilcinskas, 2015). Native insect
hosts frequently experience greater virulence from invasive pathogens
than related invasive hosts (Lymbery et al., 2014). This can lead to reduced
fitness of the native insects and result in altered competitive interactions
(Fellous & Koella, 2009; Tseng & Myers, 2014). Therefore, disease-
causing pathogens are implicated in some biological invasions, representing
significant threats to wildlife species, domestic animals, and humans (Ogden
et al., 2019).

In general, insect hostepathogen dynamics are in equilibrium, as patho-
gens are not usually the main driver regulating the size of populations
(Steffan-Dewenter & Schiele, 2008). Nevertheless, if disturbances occur in
natural ecosystems (e.g., the introduction of entomopathogenic microor-
ganisms that affect bumblebees), virulence could become more pronounced
and lead to a drastic population decline (Meeus et al., 2011). Understanding
how species interact with pathogens is therefore vital for predicting the
ecological impacts of invasive alien species on insect diversity. This chapter
attempts to summarize the most relevant aspects that underline the role of
coinvasive pathogens in the decline of native insects. We highlight some ex-
amples, such as the problem of pathogen cointroduction, the risk of intro-
ducing insect microorganisms as biocontrol agents, spillover effects, and
the side effects of using insects as a source of revenue.

Introduced insects and cointroduced pathogens

The introduction of insects may favor the cointroduction and spread of
pathogens (Table 9.1) that may result in pathogen outbreaks and changes in
native insect populations (Daszak et al., 2000; Jones et al., 2008). In the
following, we discuss some examples of how cointroduced pathogens affect
native insect populations. It should be noted that due to the long history of
domestication and commercial interest, the two main insects historically
maintained and reared in large numbers are honeybees and silkworms. Partic-
ularly, managed insects, such as domestic honeybees (Apis mellifera) and silk-
worms (Bombyx mori), are increasingly causing spillovers, posing a particular
risk to wildlife communities (Eilenberg et al., 2015; Manley et al., 2015).
However, few studies were able to demonstrate the direct impacts of cointro-
duced pathogens on native insects (Wagner & Van Driesche, 2010).
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Table 9.1 Examples of insects introduced for commercial purposes that are vectors of entomopathogenic microorganisms that could affect native insect
conservation.
Introduced insect
vectors Origin

Introduction
purpose Detection

Microorganisms
vectored

Microorganisms
status

Affected insect
species References

Harmonia axyridis
(Pallas, 1773)
(Coleoptera:
Coccinellidae)
Harlequin
ladybug

Asia Biological
control agent

North America
and Europe

Beauveria bassiana
(Hypocreales),
Hesperomyces
harmoniae and
H. virescens
(Laboulbeniales),
Nosema thompsoni
(Microsporidia),
Pandora neoaphidis
(Entomophthorales)
and Spiroplasma
(Mycoplasmatales)

Cointroduced
and
commercial
strain GHA

Adalia bipunctata
(Linnaeus,
1758),
Coccinella
septempunctata
(Linnaeus,
1758),
Harmonia
axyridis
(Pallas, 1773),
and Olla
v-nigrum
(Mulsant,
1866)

Haelewaters
et al. (2017,
2020, 2023),
Roy,
Baverstock,
et al. (2008),
Roy, Brown,
et al. (2008),
Vilcinskas
et al. (2013)

Acheta domesticus
(Linnaeus,
1758)
(Orthoptera:
Gryllidae)
House cricket

Asia Food or feed North America
and Europe

Acheta domesticus
densovirus (AdDNV)
and Serratia sp.
(Enterobacterales)

Present in mass
rearing
facilities

Tenebrio molitor
(Linnaeus,
1758) and
Zophobas
morio
(Fabricius,
1776)

Adamo (1999),
Gray (1998),
Szelei et al.
(2011)



Phoetalia pallida
(Brunner von
Wattenwyl,
1865)
(Blattodea:
Blaberidae)
Pale-bordered
cockroach

Asia Food or feed Europe Herpomyces leurolestis
(Herpomycetales)

Pet store Cockroaches
(Hexapoda,
Blattodea)

Pfliegler et al.
(2018)

Shelfordella lateralis
(Walker, 1868)
(Blattodea:
Blattidae)
Turkestan
cockroach

Central Asia and
northeastern
Africa

Food or feed Europe Herpomyces sp. nov.
(Herpomycetales)

Pet store Cockroaches
(Hexapoda,
Blattodea)

Pfliegler et al.
(2018)

Musca domestica
(Linnaeus,
1758) (Diptera:
Muscidae)
House fly

Globally
widespread

Food or feed Mass rearing
facilities

Beauveria bassiana
(Hypocreales),
Brevibacillus laterosporus
(Bacillales), Bacillus
thuringiensis israelensis
(Bacillales), and
Metarhizium anisopliae
(Hypocreales)

Present in mass
rearing
facilities

e Anderson et al.
(2011),
Zimmer et al.
(2013)

Tenebrio molitor
(Linnaeus,
1758)
(Coleoptera:
Tenebrionidae)
Yellow
mealworm
beetle

Europe Food or feed Mass rearing
facilities

Aeromonas hydrophila
(Aeromonadales) and
Bacillus thuringiensis
(Bacillales)

Present in mass
rearing
facilities

e Noonin et al.
(2011), Wu &
Dean (1996)

(Continued)



Table 9.1 Examples of insects introduced for commercial purposes that are vectors of entomopathogenic microorganisms that could affect native insect
conservation.dcont'd
Introduced insect
vectors Origin

Introduction
purpose Detection

Microorganisms
vectored

Microorganisms
status

Affected insect
species References

Zophobas morio
(Fabricius,
1776)
(Coleoptera:
Tenebrionidae)
Superworm

Central and
South
America

Food or feed Europe Metarhizium flavoviride
(Hypocreales) and
Pseudomonas aeruginosa
(Pseudomonadales)

Present in mass
rearing
facilities

e Rangel et al.
(2004),
Rumbos &
Athanassiou
(2021)

Apis cerana
(Fabricius,
1793)
(Hymenoptera:
Apidae) Asiatic
honey bee

Asia Pollination Europe Nosema ceranae
(Microsporidia)

Cointroduced Apis mellifera Paris et al.
(2018)

Apis mellifera
(Linnaeus,
1758)
(Hymenoptera:
Apidae)
European
honey bee

Africa or Asia Pollination North America
and South
America

Ascosphaera apis
(Onygenales), Nosema
ceranae
(Microsporidia) and
deformed wing virus
(DWV) (Iflaviridae)

Cointroduced Bombus atratus
(Franklin,
1913),
Bombus
bellicosus
(Smith,
1879),
Bombus
impatiens
(Cresson,
1863), and
Bombus morio
(Swederus,
1787)

Chen & Huang
(2010), F€urst
et al. (2014),
Genersch
et al. (2006),
Manley et al.
(2015),
Maxfield-
Taylor et al.
(2015),
Plischuk et al.
(2009)



Bombus impatiens
(Cresson, 1863)
(Hymenoptera:
Apidae)
Common
eastern
bumblebee

Eastern North
America

Pollination North America Crithidia bombi
(Trypansomatida)
and/or Nosema bombi
(Microsporidia)

Cointroduced Bombus affinis
(Cresson,
1863),
Bombus
ashtoni
(Cresson,
1864), and
Bombus
franklini
(Frison, 1921)

Colla et al.
(2006), Colla
& Packer
(2008)

Bombus terrestris
(Linnaeus,
1758)
(Hymenoptera:
Apidae)
Buff-tailed
bumblebee

Europe Pollination North America
and South
America

Apicystis bombi
(Neogregarinorida),
Crithidia bombi
(Trypansomatida) and
Nosema bombi
(Microsporidia)

Cointroduced Bombus affinis
(Cresson,
1863),
Bombus
ashtoni
(Cresson,
1864),
Bombus
dahlbomii
(Guérin-
Méneville,
1835), and
Bombus
franklini
(Frison, 1921)

Colla et al.
(2006), Colla
& Packer
(2008)

(Continued)



Table 9.1 Examples of insects introduced for commercial purposes that are vectors of entomopathogenic microorganisms that could affect native insect
conservation.dcont'd
Introduced insect
vectors Origin

Introduction
purpose Detection

Microorganisms
vectored

Microorganisms
status

Affected insect
species References

Bombyx mori
(Linnaeus,
1758)
(Lepidoptera:
Bombycidae)
Domestic silk
moth

Asia Recreational
activities

Mass rearing
facilities

Beauveria bassiana
(Hypocreales), Bombyx
mori densovirus
(BmDV-1), Nosema
bombycis (Microsporidia)

Cointroduced Lepidoptera
species

Eilenberg et al.
(2015, 2018)

Blatta orientalis
(Linnaeus,
1758)
(Blattodea:
Blattidae)
Oriental
cockroach

Crimean
Peninsula

Unintentional Europe, Africa,
North and
South
America, and
Asia

Herpomyces stylopygae
(Herpomycetales)

Toxicology
laboratory

Cockroaches
(Hexapoda,
Blattodea)

Pfliegler et al.
(2018)

Blattella germanica
(Linnaeus,
1767)
(Blattodea:
Ectobiidae)
German
cockroach

Southeast Asia Unintentional Europe, Africa,
Asia, and
North and
South
America

Herpomyces ectobiae
(Herpomycetales)

Toxicology
laboratory

Cockroaches
(Hexapoda,
Blattodea)

Pfliegler et al.
(2018)

Drosophila suzukii
(Linnaeus,
1758) (Diptera:
Drosophilidae)
Spotted wing
drosophila

Asia Unintentional Europe Tatumella sp.
(Enterobacterales)

Cointroduced e Hiebert et al.
(2020)



Lymantria dispar
(Linnaeus,
1758)
(Lepidoptera:
Erebidae)
Gypsy moth

Europe and Asia Unintentional North America Entomophaga maimaiga
(Entomophthorales),
microsporidians, or
nucleopoly
hedroviruses (NPV)

Cointroduced Papilio canadensis
(Rothschild
& Jordan,
1906)

(Redman &
Scriber, 2000)

Operophtera
brumata
(Linnaeus,
1758)
(Lepidoptera:
Erebidae)
Winter moth

Europe and the
near East

Unintentional North America Nucleopolyhedroviruses
(NPV)

Cointroduced Operophtera
bruceata
(Hulst, 1886)

Broadley et al.
(2017)

Pieris rapae
(Linnaeus,
1758)
(Lepidoptera:
Pieridae)
Cabbage
butterfly

Mediterranean
Basin

Unintentional Madeira island,
Portugal

Pieris rapae granulosis
virus (PrGV)

Cointroduced Pieris brassicae
subsp.
wollastoni
(Butler, 1886)

Gardiner (2003)

Periplaneta
americana
(Linnaeus,
1758)
(Blattodea:
Blattidae)
American
cockroach

Africa and the
Middle East

Unintentional
and feed

Africa, Asia,
Europe, and
North
through
South
America

Herpomyces periplanetae
(Herpomycetales)

Biological
supplies
company and
pet store

Cockroaches
(Hexapoda,
Blattodea)

Pfliegler et al.
(2018)



Pollinating insects
Insects are well known as important pollination agents, and the domestica-
tion, introduction and use of pollinators for commercial purposes are well
documented (Hardouin, 1995). But, the introduction of alien pollinators
has led to the cointroduction of their associated pathogens (Hedtke et al.,
2015). For example, the introduction and use of alien honey bees has
resulted in spillover of pathogens to wild bees populations, mainly through
contact with shared foraging resources, contaminated pollen, or feces
(Durrer & Schmid-Hempel, 1994; Singh et al., 2010; Whitehorn et al.,
2013), posing a threat to their conservation (Meeus et al., 2011).

The best-documented cases of pathogen spillover between introduced
and native pollinators are thus those associated with bees (Adler et al.,
2018; Goulson et al., 2015). For example, it has been documented that
the introduction of domestic A. mellifera can favor the transmission of path-
ogens to wild native Bombus species (F€urst et al., 2014). Likewise, the intro-
duction and commercial use of the European B. impatiens and B. terrestris
bumblebees in North America to pollinate greenhouse crops has been
related to the cointroduction of European strains of the TrypansomatidaCri-
thidia bombi and Microsporidia Nosema bombi (Colla et al., 2006), which has
led to the decline of native Bombus species (B. affinis, B. ashtoni, and B. frank-
lini) (Colla et al., 2006; Colla & Packer, 2008). Another example, Apicystis
bombi, a member of parasitic Apicomplexa, was probably cointroduced
with B. terrestris to South America, causing devastating impacts on popula-
tions of the native B. dahlbomii to the point that this austral species is near
imminent extinction (Schmid-Hempel et al., 2014). Furthermore, the
microsporidian parasite Nosema ceranae, associated with the Asian honeybee
Apis cerana, has switched hosts to European A. mellifera and, more recently,
to South American native bumblebees (Plischuk et al., 2009), causing severe
impacts on these pollinators (Chen & Huang, 2010). It has been reported
that this fungus causes a suppression of the immune system of infected
bees and makes them more susceptible to other pathogens (Paris et al.,
2018). The ascomycetous fungus Ascosphaera apis (Onygenales) has also
been detected in adult bumblebees from Apis spp. hosts previously reported
on larvae of A. cerana and A. mellifera (Maxfield-Taylor et al., 2015). Finally,
another example is the prevalence of deformed wing virus (DWV) (Iflavir-
idae) in bumblebees and honeybees. Honeybees have such a high prevalence
of this virus that even the same strain can be easily transmitted to sympatric
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bumblebees (F€urst et al., 2014; Genersch et al., 2006; Manley et al., 2015).
This results in the appearance of morphologically abnormal bees, including
vestigial or crumpled wings, shortened, bloated abdomens, and discoloration
(Genersch et al., 2006). Therefore, it is important to monitor and detect
emerging infectious diseases in commercial bumblebee colonies that may
affect wild bumblebee species, caused by e.g., Apicystis bombi, Locustacarus
buchneri, Nosema bombi, or the viral pathogens DWV, acute bee paralysis vi-
rus, or chronic bee paralysis virus (Sachman-Ruiz et al., 2015).

The seven examples mentioned here suggest that it is absolutely
necessary to implement measures to avoid the interaction of wild and
commercially reared bees (Murray et al., 2013) and urgently address
this problem with stakeholders, conservation practitioners, and policymakers
(Manley et al., 2015). A better understanding of the biology and prevalence
of pathogens across the spectrum of bees, social and solitary, native and
alien, is needed to mitigate the spread of disease and pollinator decline
(Evison & Jensen, 2018; Vilcinskas, 2019). In addition, deworming of
commercial populations and routine detection of pathogen incidence
are highly desirable (New, 2016a), as well as mandatory legislation
(Meeus et al., 2011). Future studies should focus on resolving paradigms
about whether species become infected as a result of spillover or whether
transmission occurs within these wild populations (Mallinger et al., 2017;
Manley et al., 2015).

Predatory insects as biological control agents
Classical biological control is a remarkable tool to protect native species
against pests, weeds, or invasive organisms (Schaffner et al., 2020;
van Wilgen et al., 2020). However, the introduction of insects as biological
control agents can result in the cointroduction of entomopathogenic micro-
organisms, which represent a potential threat to resident native insects
(Wagner & Van Driesche, 2010). The most discussed case to date is the
introduction of the invasive harlequin ladybug Harmonia axyridis as a biolog-
ical control agent. At the beginning of the 20th century, this ladybug was
introduced to control aphids and scale insects in Europe and North America.
However, its introduction caused severe environmental impacts (Roy &
Wajnberg, 2008). The invasion success of this species is related to its strong
resistance to insect pathogens, which allows it to be infected by a multitude
of entomopathogenic microorganisms without consequences (Röhrich
et al., 2012). One of these pathogens, to which H. axyridis is resistant, is
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the cointroduced microsporidian Nosema thompsoni, which can kill other
native ladybug species (e.g., Adalia bipunctata or Coccinella septempunctata)
when these natives feed on H. axyridis eggs or larvae contaminated with
this microsporidium (Vilcinskas et al., 2013). Another ectoparasitic fungus,
Hesperomyces harmoniae, also infects H. axyridis in the Americas and Europe
(Haelewaters et al., 2017, 2023). This could potentially pose a serious threat
as, to date, it has been demonstrated that infection with H. harmoniae under
controlled conditions causes native ladybug mortality (Haelewaters et al.,
2020). In contrast, the pathogenic fungus Beauveria bassiana commonly in-
fects native ladybug species such as C. septempunctata, but H. axyridis has
been shown to be highly resistant (in terms of mortality) despite suffering
a sublethal effect by reducing egg production (Roy, Brown, et al., 2008).
Overall, several native ladybug species are currently affected by and dis-
placed due to the invasion of H. axyridis and the cointroduction of patho-
gens in the new habitats it invades (Vilcinskas, 2015).

While under controlled conditions it has been shown that microsporidia
infections can cross the species barrier when ingested orally by native pred-
atory insects (Vilcinskas et al., 2015), it is uncertain whether, under field
conditions, intraguild transmitted microsporidia are necessarily lethal to
native predators even though the sublethal effect by reducing the fecundity
or fitness of native competitors may be very advantageous toH. axyridis (Vil-
cinskas et al., 2015). This could explain the decline of some native ladybugs
in the northeastern United States of America (USA) after the introduction of
the invasive harlequin ladybug (Wagner & Van Driesche, 2010). Some au-
thors have also shown that the infection of H. axyridis by bacteria of the
genus Spiroplasma, which can affect males of some insect species, increases
the body size and fecundity of this invasive ladybug (Awad et al., 2023;
Elnagdy et al., 2013). Interestingly, H. axyridis has no qualms about feeding
on aphids infected by the pathogenic fungus Pandora neoaphidis, while most
other aphid predators avoid consumption (Roy, Baverstock, et al., 2008;
Roy et al., 1998). Therefore, the antimicrobial compound harmonine pre-
sent in the harlequin ladybug seems to play a crucial role in resistance against
pathogens (Röhrich et al., 2012). This superior immune system may explain
its invasion success even when it carries cointroduced pathogens or parasites
(Gegner et al., 2018). Consequently, it is important to avoid the cointroduc-
tion of entomopathogenic microorganisms when introducing alien insects as
biological control agents, since such cointroduction may compromise the
conservation of native insects.
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Insects as food and feed
Insects have been an important source of food in human nutrition
throughout history, forming part of traditional diets in various cultures
worldwide (DeFoliart, 1997). They provide a high source of proteins, fatty
acids, important minerals, and vitamins such as thiamin and riboflavin
(DeFoliart, 1992). Due to their nutritive value and to alleviate food short-
ages, there is currently an increasing interest in producing insects on a large
scale for food and feed. At present, many of the reared species are considered
pests that can transmit entomopathogenic microorganisms to natural popu-
lations of wild native insect species (Bang & Courchamp, 2021).

Some of the most common industrially reared insect species for food and
feed are the house cricket (Acheta domesticus), garbage beetle (Alphitobius dia-
perinus), black soldier fly (Hermetia illucens), giant water bug (Lethocerus indi-
cus), palm weevil (Rhynchophorus ferrugineus), mealworm beetle (Tenebrio
molitor), and superworm (Zophobas morio) (van Huis, 2013; Vilcinskas,
2019). Many of them have a robust immune system that includes many anti-
microbial peptides and chemical defense compounds, allowing them to resist
the attack of a wide range of pathogens (Röhrich et al., 2012; Vogel et al.,
2018). But, the trade of these insects can risk the spread of covert infections
and the transmission of pathogens to native insects (Vilcinskas, 2019). In
rearing facilities, workers may carry various kinds of microorganisms,
including insect pathogens, on themselves or their clothing (Cohen,
2015). Consequently, insect farming requires control measures to prevent
pathogens from being transmitted through food or feed and becoming res-
ervoirs of insect pathogens (Eilenberg et al., 2018; Grau et al., 2017).

Due to the increasing demand for insects for food and feed, the market
for edible insects has experienced an increase in industrialization and inten-
sification without adequate rearing centers and regulatory policy guidelines
to contain the species and diseases (Bang & Courchamp, 2021). Industrial-
scale insect mass rearing promotes inbreeding and increases the risk of disease
outbreaks (Vilcinskas, 2019). In production systems, insects infected with
pathogenic bacteria or fungi can escape to open environments and poten-
tially cause severe damage to wild insect populations. A clear example that
posed a potential risk to wild native insect populations is the introduction
and use of A. domesticus and the associated introduction of the densovirus
(AdDNV), which has decimated commercial mass rearing systems of this
cricket in many parts of North America since the autumn of 2009 (Szelei
et al., 2011). However, the spillover to other insect species, such as members
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of the genus Gryllus (G. assimilis and G. bimaculatus) that seem resistant to
AdDNV (Szelei et al., 2011) or mealworms, has not been yet documented
(Grau et al., 2017). Although the transmission of this virus often occurs
among taxonomically related species, invertebrate viruses can cross the spe-
cies barrier (Eilenberg et al., 2018). Therefore, the potential risk of affecting
wild native insect populations cannot be completely excluded.

In addition, entomopathogenic bacteria and fungi can also affect insects that
are reared for food or feed (Eilenberg et al., 2015). For example, house fly
(Musca domestica) larvae are susceptible to the bacteria Brevibacillus laterosporus
and B. thuringiensis var. israelensis (Zimmer et al., 2013), and adults to the fungi
Beauveria bassiana and Metarhizium anisopliae (Anderson et al., 2011). Meal-
worm beetle can be infected by bacteria Aeromonas hydrophila and
B. thuringiensis (Noonin et al., 2011; Wu & Dean, 1996). House cricket can
be affected by bacteria of the genus Serratia (Adamo, 1999; Gray, 1998) and
fungi of the Hypocreales group, e.g., Metarhizium flavoviride, can infect some
insects such as the superworm Zophobas morio (Rangel et al., 2004; Rumbos
& Athanassiou, 2021). From an applied perspective, companies should avoid
rearing invasive alien insects and focus on controlling potential diseases in insect
production systems. In addition, the establishment of protocols by administra-
tions could help prevent insect escapes, mitigate potential outbreaks, and con-
trol diseases to avoid their release into the environment (Eilenberg et al., 2015).

Unintentional introductions
Risks of escape from production facilities into the open environment are pri-
marily linked to poor human practices and inadequate physical characteris-
tics of facilities (Eilenberg et al., 2018). However, other unintentional
introductions are related to declines and impacts on native insect species.
These include the cointroduction into Europe of the invasive fruit fly
Drosophila suzukii with pathogenic bacteria that has affected native fruit fly
populations (Hallmann et al., 2017; Hiebert et al., 2020). Furthermore,
the pet trade industry globally has favored the cointroduction of Herpomy-
ces ectoparasitic fungi with the introduction of cockroaches from artificial
colonies for pet store and laboratory use (Pfliegler et al., 2018). Another
example is the introduction of the butterfly Pieris rapae on Madeira Island,
Portugal (Kenis et al., 2009), which brought about the cointroduction of
a different strain of the granulosis virus for which the congener, Madeiran
large white Pieris brassicae subsp. wollastoni, had no resistance (Gardiner,
2003). This, in turn, led to a sharp decline and eventual extinction of this
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endemic island species (Kenis et al., 2009). On the other hand, disease out-
breaks of invasive insect species can also result in severe problems for the
environment. It has been shown that due to the spread of invasive gypsy
moth (Lymantria dispar) pathogens in North America, some of the body
fluids of dead gypsy moth caterpillars are released into the environment,
remaining dissolved in leaves and branches (Barber et al., 1993; Redman
& Scriber, 2000). Similarly, the invasive winter moth, Operophtera brumata,
has been cointroduced in North America (Broadley et al., 2017) with Ento-
mophaga maimaiga, microsporidians, or nucleopolyhedroviruses. These path-
ogens may negatively affect the larvae of other native species such as the
swallowtail, Papilio canadensis (Redman & Scriber, 2000), or Bruce span-
worm, Operophtera bruceata (Broadley et al., 2017), causing devastating im-
pacts on native insect biodiversity (Hulme, 2007).

Pathogens as biocontrol agents

Over the last 200 years, various pest management actions have been
carried out using pathogenic microorganisms as biological control agents
of insects, to meet the demands of sectors such as agriculture, livestock pro-
duction, and public health (Table 9.2). At the beginning of the 19th century,
biological control programs aiming to combat insect pests were based mainly
on fungi (Amsellem et al., 2017). However, with the discovery of the bac-
terium Bacillus thuringiensis in the early 20th century, other pathogenic mi-
croorganisms began to be used against insect pests (Lacey et al., 2001). The
use of microorganisms as biocontrol agents was so diverse that today any
type of pathogenic microorganism, e.g., bacteria, fungi, protists, and viruses,
is being used to manage invasive insect species (Amsellem et al., 2017). The
main microorganism used in the biological control of insect pests is
B. thuringiensis, whose first use as a pesticide by farmers was in 1920 (Hajek
& Tobin, 2010; Miller et al., 1983). The mode of action of this pathogenic
microorganism is based on the production of insecticidal proteins (Palma
et al., 2014). Furthermore, other bacteria such as those of the genus Wolba-
chia have also been recognized as effective biological control agents (Zindel
et al., 2011), whose mode of action is based on the alteration of host repro-
duction through the induction of parthenogenesis, cytoplasmic incompati-
bility, or feminization of genetic males (Vavre & Charlat, 2012). For this
reason, many researchers have resorted in recent years to genetic engineering
techniques to increase the efficacy of pathogenic microorganisms used in
biocontrol programs (Amsellem et al., 2017).
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Table 9.2 Examples of introduced pathogens used as biological control agents against insects.

Introduced pathogens Purpose Detection Insect target species Mode of action
Other species
affected References

Bacillus thuringiensis
Berliner (Firmicutes:
Bacillales)

Pesticides and
biocontrol agents

North
America

Insect pests Production of
insecticidal proteins

e Hajek & Tobin
(2010), Miller et al.
(1983), Palma et al.
(2014)

Beauveria bassiana
(Balsamo) Vuillemin
(Ascomycota:
Hypocreales)

Biocontrol agent Several
countries

Insect pests Mycoinsecticides or
mycoacaricides

Coccinellids Faria & Wraight
(2007), Roy,
Brown et al. (2008)

Metarhizium anisopliae
(Metchnikoff)
Sorokin
(Ascomycota:
Hypocreales)

Biocontrol agent Several
countries

Insect pests Mycoinsecticides or
mycoacaricides

Coccinellids Faria & Wraight
(2007)

Nosema sp.
(Microsporidia:
Dissociodih
aplophasida) and
other Microsporidia

Biocontrol agent Europe Leptinotarsa
decemlineata,
Phyllobrotica armata,
Phyllotreta atra,
Phyllotreta undulata,
and Tribolium
castaneum

e Parasitic wasps Chapman & Hooker
(1992), Vilcinskas
et al. (2015)



Paranosema locustae
Canning
(Microsporidia:
Dissociodih
aplophasida)

Introduced
experimentally as
a biocontrol agent

Argentina,
South
America

Native grasshopper
pests

e Endemic
grasshopper
Scotussa daguerrei

Bardi et al. (2012),
New (2016a)

Wolbachia sp.
(Proteobacteria:
Rickettsiales)

Biocontrol agent Several
countries

Drosophila melanogaster,
Drosophila suzukii,
Aedes aegypti, etc.

Alteration of host
reproduction
through the
induction of
parthenogenesis,
cytoplasmic
incompatibility, or
feminization of
genetic males

Phytophagous pest
mite of the
genus Bryobia

Hiebert et al. (2020),
Vavre & Charlat
(2012), Zindel et al.
(2011)



It is worth mentioning that some authors consider the use of microor-
ganisms to control insect pests an alternative strategy to the application of
chemical insecticides (Lacey et al., 2001; Lee & Vilcinskas, 2017; Schetelig
et al., 2018). In recent years, efforts have been invested in the search for nat-
ural pathogens to combat beetle pests, and it has been discovered that some
species of microsporidia can act as biological control agents affecting beetle
species such as Colorado potato beetle Leptinotarsa decemlineata, red flour
beetle Tribolium castaneum, and leaf beetles Phyllobrotica armata, Phyllotreta
atra and Phyllotreta undulata (Vilcinskas et al., 2015). Besides, the ascomycetes
B. bassiana and M. anisopliae are the best characterized and the most widely
used in biological control programs, appearing in about 68% of mycoinsec-
ticides or mycoacaricides (Faria &Wraight, 2007). Previous studies have also
evaluated the effectiveness of various pathogens from three phyla, such as
Actinobacteria, Firmicutes, and Proteobacteria, in controlling the invasive
fly D. suzukii (Hiebert et al., 2020). Nevertheless, the indiscriminate use
of these pathogenic microorganisms can have side effects that affect other
native insects (New, 2016a). In fact, the use of B. bassiana as a biological con-
trol can be counterproductive and insignificant as it has been shown to affect
both target and nontarget insects (Roy, Brown, et al., 2008).

The use of microsporidia to control introduced insects is currently
controversial because they can also impact native insect species (Vilcinskas
et al., 2015). For example, the microsporidium Paranosema locustaewas intro-
duced experimentally to the pampas region to control native grasshopper
pests in Argentina (New, 2016a). However, this microsporidium is a gener-
alist pathogen capable of attacking different grasshopper species, including
several rare and very localized species (Bardi et al., 2012). In fact, these au-
thors showed that one of the most vulnerable grasshopper species (Scotussa
daguerrei) in Argentina is now at risk of potential extinction due to the spread
of P. locustae. Microsporidia are also frequent parasites of ladybugs
(Vilcinskas, 2019), which makes the release of ladybug species as biological
control agents problematic, as it may promote the spread of microsporidia to
new areas and potentially to new coccinellid hosts (Roy et al., 2016;
Vilcinskas et al., 2013, 2015). Parasitic wasps that feed on insects can also
be a common host of microsporidia; therefore, their use in biological control
programs can cause these microsporidia to affect their prey or even other in-
sect species (Chapman & Hooker, 1992). Biological control programs
should take this information into account before carrying out actions using
pathogens as biological control agents.
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Introduced plants and cointroduced pathogens

The introduction of alien plants can promote the cointroduction of
plant pathogens that can be spread directly by abiotic factors (Amsellem
et al., 2017) or by insect vectors (New, 2016b;Wingfield et al., 2017). Coin-
troduced plant pathogens can impact native plants (Vilcinskas, 2015) and, in
turn, indirectly affect herbivorous insects. For example, some authors
demonstrated that invasive plants such as Bromus tectorum, Chromolaena odor-
ata, or Vincetoxicum rossicum accumulate pathogenic fungi that suppress the
growth of native plants or germination of their seeds (Beckstead et al.,
2010; Day et al., 2016; Mangla et al., 2008). This can lead to a decline in
native plant populations (Lymbery et al., 2014; Strauss et al., 2012), and,
consequently, in the populations of native insects that are closely dependent
on such native plants (Wagner & Van Driesche, 2010). For example, the
introduction of the chestnut fungus Cryphonectria parasitica at the beginning
of the 20th century in North America directly affected American chestnut
(Castanea dentata) populations (Rigling & Prospero, 2018), causing the
near disappearance of a tree that now persists only as stump sprouts (Wagner
& Van Driesche, 2010). As a result, in the 1970s, at least five native insects
closely associated with the American chestnut were reported to be extinct:
Argyresthia castanella, Ectoedemia castaneae, Ectoedemia phleophaga, Tischeria per-
plexa, and Swammerdamia castaneae (Opler, 1978).

Insect vectors play an important role in facilitating or transmitting dis-
eases, especially if they are invasive herbivorous insects. In North America,
some examples show that diseases related to alien-insect vectors cause signif-
icant damage to forest ecosystems, even though the insects themselves do
not represent a severe problem (Kenis et al., 2009). In the 20th century,
Dutch elm disease (Ophiostoma ulmi) spread through the introduction of
the European elm bark beetle, Scolytus multistriatus (Brasier, 2000). This
was also the case for the fungus Neonectria faginata that causes beech bark dis-
ease and is directly transmitted by European beech scale, Cryptococcus fagisuga
(Houston, 1994; Morin et al., 2007). Other examples also confirmed that
pathogen spillback affects native plant hosts and the behavior of animal pop-
ulations (Kelly et al., 2009). For example, the spread of the alien spittlebug
Philaenus spumarius in North America poses a potential threat because it is a
polyphagous species vector of the plant pathogen Xylella fastidiosa that causes
Pierce’s disease (Beal et al., 2021). Furthermore, the introduction of invasive
grasses in North America led to an increase in native aphid populations
feeding on those invaders (Strauss et al., 2012). As a consequence, this
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facilitated the spillback of barley and cereal yellow dwarf viruses vectored by
those hemipteran insects to both native and alien plants, but doubling of
viral incidence in natives (Malmstrom et al., 2005).

Concluding remarks and future directions

At the end of the 20th century, it was emphasized that future research
should explore the best use of entomopathogenic microorganisms for bio-
logical control, the newly discovered antimicrobial molecules, and develop
strategies for the management of insect vectors of pathogens (Gillespie et al.,
1997). Far from it, global change and the movement of species across the
globe made achieving the balance between human activities and insect con-
servation even more challenging. Global trade and transport, combined with
gaps in international policies, are leading to new biological invasions pro-
moted by the cointroduction of pathogens (Bang & Courchamp, 2021).
The introduction of alien insect species for biological control, pollination
services, or mass rearing can threaten native diversity and conservation by
spreading cointroduced microorganisms (Vilcinskas, 2019). Furthermore,
the increase in large-scale insect production for food and feed has generated
new disease problems, as it occurred in honeybees and domestic silkworm
production (Eilenberg et al., 2015). Another important challenge is the
ongoing influence of climate change on the distribution of insect species,
which may result in the migration of insects transporting pathogens to
new areas (Bebber et al., 2013). Consequently, establishing continental-
scale monitoring programs will become increasingly necessary (Chapman
et al., 2015).

Pathogens are mostly much smaller than other alien species and require
suitable hosts to spread, so they tend to go unnoticed and are not usually
classified as invasive (Strauss et al., 2012). Therefore, efforts should be
focused on avoiding the cointroduction of pathogens (Bang & Courchamp,
2021; van Huis, 2013). One of the key measures to avoid the spillover of
entomopathogenic microorganisms is to prevent the introduction of
diseased plants and insects to the open environment, which can be achieved
through improved monitoring and management practices (Manley et al.,
2015). For instance, rigorous cleaning routines (disinfection and sterilization)
should be implemented in rearing facilities to reduce the risk of introducing
and transmitting pathogens (Eilenberg et al., 2018). Another important fac-
tor to consider is to choose species unsuitable for life outside mass-rearing
facilities due to incompatibility with new environments, which can be
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identified by performing climatic niche modeling (Bang & Courchamp,
2021). Once an entomopathogenic microorganism affecting native insect
populations is detected, in order to slow down its spread, all factors that
affect population growth and/or dispersal must be taken into account
(Prospero & Cleary, 2017). Therefore, appropriate good-practice manuals
should be established with international legislation regulating human activ-
ities, physical characteristics of facilities, and practices that allow the move-
ment of alien species across international borders (Bang & Courchamp,
2021; Eilenberg et al., 2018; Murray et al., 2013).

Control of invasive alien insects is often essential for the protection of
native insect biodiversity. However, the measures established so far to miti-
gate the introduction of invasive species appear insufficient. Countries set
their own criteria for the importation of insect species considering the effect
of their pathogens on humans or vertebrate hosts, but not on native inver-
tebrates (Bang & Courchamp, 2021). Legal regulations on the use of insects
vary between countries, and precise standards on safety, marketing, and an-
imal welfare are largely lacking (L€ahteenm€aki-Uutela et al., 2017, 2021).
These differences no longer only complicate international regulations and
the trade of insect products (L€ahteenm€aki-Uutela et al., 2018), but can
also lead to the spread of pathogens from domesticated livestock to wild
populations, being a major source of emerging infectious diseases (F€urst
et al., 2014; Sachman-Ruiz et al., 2015). Therefore, biosecurity policies
adopted by many countries at the international level should be strengthened
to prevent new introductions. These include, for example, legislative actions
to improve health certification of commercial insects prior to export or dis-
tribution; integration with existing inspection and quarantine services at the
time of import; disease control, or including environmental risk assessment
as a precondition for importation (Lovett et al., 2016; Murray et al., 2013).
In fact, one of the measures established by some countries in the last decade
(e.g., Canada, China, Israel, Mexico, Turkey, and the USA) is the prohibi-
tion of the importation of alien bumblebees in favor of native congeners
(Murray et al., 2013).

Prior to management interventions to control invasive insect hosts, con-
trol of potential cointroduced pathogens should be considered (Lymbery
et al., 2014). If spillover or cointroduced pathogen invasion occurs, chemical
and mechanical methods to control the insect host are often locally effective.
However, these methods may be impractical or expensive for the rehabili-
tation of large landscapes (Wagner & Van Driesche, 2010). Applying other
measures, such as the use of antibiotics to treat reared insects and prevent
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diseases, does not seem to be a wise decision since the negative side effects
could outweigh the benefits by increasing the potential spread of
antibiotic-resistant pathogens (Grau et al., 2017). A more viable alternative
to control or reverse the impacts of invaders could be biological control.
Therefore, it is extremely necessary to develop advanced tools for pathogen
diagnosis in insects farmed for human activities. In this way, the pathogen
spillover can be mitigated, and devastating effects on native insect popula-
tions avoided (Vilcinskas, 2019). More research is also needed to see how
to prevent the outbreak of infections among farmed insects with the use
of probiotic bacteria and transgenerational immune priming (Grau et al.,
2017). Even with the recent development of molecular tools, comprehen-
sive detection of commercial and natural populations can be costly, and
treatments are currently unavailable for most pathogens (Meeus et al.,
2011). Thus, joining forces of conservation organizations, scientists, com-
mercial companies, and policymakers to encourage the responsible use of
commercial insects could minimize the pathogen spillover.
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Introduction

Invasive species management actions can be divided into four types of
measures: prevention, eradication, long-term management, and restoration
(Robertson et al., 2020). A proactive approach, focusing on prevention, is
often the most cost-effective management option (Leung et al., 2002).
The complete eradication of an invasive alien species is only feasible when
its invasion is still localized and immediately managed (Rejm�anek & Pitcairn,
2002). Eradication is generally also more feasible on islands than on
continents: more than 1000 successful invasive alien species eradications
from islands have been undertaken around the world (Glen et al., 2013;
Simberloff, 2011). When an invasive alien species is already widespread in
the invaded area, management efforts are usually focused on reducing its
negative impacts. Moreover, if invaders have not had enough time to inflict
irreversible damage to the natural functioning of an ecosystem, there is an
opportunity for restoring the invaded area after removing the invader. For
example, following uprooting of invasive plant species from the genus Car-
pobrotus and removing their litter from a small Mediterranean island, there
was diversification of native beetle assemblages (Braschi et al., 2021).

The management of alien species can also include active restoration ac-
tivities that improve recovery of ecosystems (Gann et al., 2019). For
example, where invasions have eliminated entire local populations, and po-
tential source populations are too far away to enable rapid natural recoloni-
zation (e.g., on isolated islands), active introduction of target species may be
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necessary after reducing the population or eradicating the invasive alien spe-
cies. The restoration of the Grande Montagne Nature Reserve on
Rodrigues Island in the Indian Ocean involved removing invasive plant spe-
cies and planting over 150,000 native seedlings previously grown in local
nurseries. Fifteen years later, endemic Orthoptera average density was seven
times greater, and the average species richness was doubled at the restored
site (Hugel, 2012). Moreover, when invasive alien species have altered the
local biotic and abiotic conditions, restoration actions might include
substrate modifications. For example, restoration actions to improve the
habitat of the endangered Ohlone tiger beetle Cicindela ohlone (Freitag &
Kavanaugh, 1993) included topsoil scraping to create bare ground patches
for the beetles to lay their eggs (Cornelisse et al., 2013). Although restoration
actions are rarely aimed at insect assemblages, overall, alien species manage-
ment actions may affect the physical environment and the biota of ecosys-
tems (Whisenant, 1999).

Insect assemblages may be particularly sensitive to alien species manage-
ment actions. This is because they have complex life cycles with develop-
mental polymorphism (with eggs, larvae, and adults not necessarily sharing
the same habitat, and larvae and adults not always having the same diet
and not being at the same level in the trophic network). This means that
management actions can affect native insect diversity and postdisturbance in-
sect recovery by, for example, directly killing adults or larvae, or by altering
the quality and availability of nesting substrates, oviposition sites, larval hab-
itats, or food resources (Glenny et al., 2022).

While some of the impacts of invasive alien species on insect diversity are
well documented (Davis et al., 2018; Schirmel et al., 2016), the conse-
quences of the management of alien species on insect diversity are not often
evaluated. Within this context, this chapter reviews some of the most com-
mon methods available for managing terrestrial invasive alien species and
their potential effects on insects, including prescribed burning, physical
removal (e.g., uprooting, trapping), grazing, mowing, the application of
chemical compounds (i.e., pesticides, selective insect trapping, or luring),
and biological control.

Prescribed burning

Prescribed burning (i.e., planned and controlled application of fire for
attaining specific goals) (Francos & �Ubeda, 2021) is a management tool used
in biodiversity conservation to maintain and restore grassland ecosystems,
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savannahs, woodlands, and forests (Fuhlendorf et al., 2009; Peterson &
Reich, 2001; Ryan et al., 2013; Valk�o & De�ak, 2021). Prescribed burning
can increase the conservation value of habitats by modifying their structure
and species composition through an increase in environmental heterogene-
ity, as well as modifying soil parameters, microclimate, and/or biomass
(Francos & �Ubeda, 2021; Valk�o & De�ak, 2021).

Prescribed fires are notably applied to clear invasive vegetation and pro-
mote the colonization or recovery of keystone plant species in fire-prone
ecosystems (DiTomaso et al., 2006; Packard & Mutel, 2005; Rooney &
Leach, 2010). The long-term control of invasive plants requires the deple-
tion of reproductive structures. Therefore, fire must either kill plants before
their seeds become viable (DiTomaso et al., 1999) or destroy the seeds to
avoid seed dispersion, germination, or establishment of a soil seed bank
(Allen, 1995). For example, in California, the annual invasive barb goatgrass
(Aegilops triuncialis) was successfully controlled by applying prescribed burns
before seed maturation and dispersal (DiTomaso et al., 2001). Repeated pre-
scribed burns can be effective in suppressing some invasive perennial species
by preventing resprouting (Svedarsky et al., 1986).

Prescribed burning has also been applied to control native insect pests in
fire-prone environments (Swengel, 2001), such as reducing the abundance
of grasshoppers that feed on grassland plants, potentially competing with
livestock (Branson et al., 2006; Warren et al., 1987), and ticks and horn flies
that transmit diseases to people and livestock (Polito et al., 2013; Scasta et al.,
2012). Therefore, prescribed burning could also be successful in controlling
insect invasions. For example, burns applied to manage nonnative grasses in a
nature reserve in California also reduced invasive Argentine ants (Linepithema
humile) abundance by 75% (Sanders, 2004). However, we did not find any
literature on the use of prescribed burning for managing alien insect
invasions.

Studies investigating the vulnerability of native insects to fire show that
responses range from positive to negative depending on the insect species
(Anderson et al., 1989; Panzer, 2002; Ulyshen et al., 2021), its functional
traits (i.e., mobility of larvae and adults, life stage, and feeding guild;
Fig. 10.1: Kral et al., 2017), local habitat features, climate, fire properties
(i.e., intensity, coverage, frequency), and other management actions (i.e.,
fire combined with grazing) (Delaney et al., 2016; Kral et al., 2017). Overall,
insect richness and abundance may sometimes decline during fire and in the
immediate aftermath (0 to 1e2 months after fire) (Swengel, 2001).
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Nevertheless, native insect populations are rarely eradicated by single fires
(Panzer, 2002), especially in fire-prone ecosystems where species are adapted
to fire.

Thorough studies evaluating the responses of native insects to prescribed
burning applied to manage invasive species are lacking (DiTomaso et al.,
2006; New, 2019). However, some surveys showed positive effects of pre-
scribed fire on the composition and diversity of native arthropod assem-
blages. For example, Delaney et al. (2016) investigated the secondary
effects of prescribed fire treatments used in degraded grasslands to reduce
dominance of invasive grasses on native butterfly assemblages. In this study,
prescribed burning (i.e., burn every 3 years in spring over 7 years) was
applied to shift the plant community composition toward a native-
dominated prairie, which was expected to support target native butterfly as-
semblages. The results of this study showed a positive effect of prescribed
burning on native arthropods because, after burning, the composition of
plant communities and butterfly assemblages was similar to that seen in

Figure 10.1 Vulnerability to fire at various levels of mobility, life stage, and preferential
habitat. (1) Mobility and life stage should be evaluated before feeding guild because
mobility is a primary determinant of vulnerability. Arthropods with higher mobility
can escape the direct effects of fire regardless of their preferential habitat, and adult
arthropods typically have more mobility to escape the fire and recolonize recently
burned areas. (2) Insects living belowground are generally protected from fire, but
some arthropods may escape flame fronts in the upper canopy or under rocks and insu-
lating litter at the soil surface. From Kral, K. C., Limb, R. F., Harmon, J. P., & Hovick, T. J.
(2017). Arthropods and fire: Previous research shaping future conservation. Rangeland
Ecology & Management, 70, 589e598. https://doi.org/10.1016/j.rama.2017.03.006.
Drawings E. Buisson and courtesy of S. Le Stradic.
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native-dominated grasslands. In Texas, prescribed burns were applied in
winter and summer (three burns in 6 years) on two grasslands invaded by
the C4 grass Bothriochloa ischaemum that showed contrasting effects on the
assemblage structure of arthropods (Johnson et al., 2008). Management ac-
tions resulted in the reduction of B. ischaemum cover, especially when
applied in summer (mid-growing season) (Simmons et al., 2007). The
timing of prescribed burns significantly affected the abundance and compo-
sition of native arthropods. Summer burns led to a greater total abundance of
native arthropods (þ170% compared with winter burns) and positive shifts
in arthropod assemblage composition. These differences may be linked to
changes in plant composition as well as many insects reaching adulthood
in early summer. Mobile adult stages allowed them to escape fire more
easily than immatures, with populations rebounding more rapidly after
fire (Johnson et al., 2008).

Based on a few case studies on general insect responses to fire, we offer a
set of recommendations to improve insect conservation when planning pre-
scribed burning for managing alien species. First, prescribed burning should
be avoided when some rare or threatened insects occur on the invaded site,
especially when these occur in very small populations, i.e., the entire pop-
ulation is threatened by the prescribed burn or when the population is iso-
lated in a fragmented landscape (New, 2014). Prescribed burning is also not
recommended when native insect populations demonstrate low movement
capacity (low movement potential increases vulnerability, while high
vagility may facilitate both escape and later recolonization) or high special-
ization (high specialization can increase vulnerability through dependence
on specific host plants or other resources) (New, 2014). Second, the appli-
cation of prescribed burning must consider insect phenology as much as
possible. Notably, prescribed burning should not be applied during periods
of high insect vulnerability, such as aboveground stages for insects with low
movement capacity (New, 2014) or vulnerable larvae stages (Johnson et al.,
2008). Also, isolated insect populations in fragmented landscapes may be
incapable of surviving repeated prescribed fires. Increasing the intervals be-
tween fires may also help preserving or restoring native insect diversity
(New, 2014). Finally, prescribed burning can be applied heterogeneously
to the landscape to provide a mosaic of burned and unburned (refuges) areas.
This may be possible if the target alien species have a patchy distribution.
Refuge areas provide protection for vulnerable species or life stages during
fire, and supply food resources and cover after the fire (Kral et al., 2017;
Swengel & Swengel, 2007), which is especially important for pollinating
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insects (Adedoja, Dormann, et al., 2019; Adedoja, Kehinde, et al., 2019).
Therefore, avoiding large-scale block burning and favoring small-scale
mosaic management is recommended to maintain and enhance landscape
heterogeneity and biodiversity.

Physical removal

Physical removal of invasive plants
Physical removal of invasive alien plants includes uprooting, felling,

slashing, ringbarking, etc. In this section, we discuss physical removal,
excluding mowing and grazing, which we discuss separately (see the
following sections Mowing and Grazing).

Shrubs and trees are prime targets for physical removal because they are
large and easy to spot. In clearing operations, invasive trees are felled, and
their biomass is usually removed to promote the recovery of native vegeta-
tion (Blanchard & Holmes, 2008). Small populations of invasive alien suc-
culent herbs or other nonwoody species can also be controlled using
manual uprooting or pulling (Buisson et al., 2021; Pardini et al., 2008).

Physical removal (excluding mowing and grazing) offers the advantage of
being relatively benign to nontarget plants (Flory & Clay, 2009) and can
enhance native plant germination by increasing available light, temperature,
and nutrient leaching (Biggerstaff & Beck, 2007). Therefore, its impact on
insects appears limited compared with other less selective techniques, such
as burning, grazing, mowing, or the spread of nonselective herbicides.
This is particularly true when the removal does not require the use of heavy
machinery that compacts the soil and is harmful to insects living in or laying
eggs in the soil.

Physical removal may directly kill insects living in the immediate sur-
rounding of the target invasive alien plants, but we are unaware of any study
evaluating these effects. Moreover, physical removal might trigger soil
erosion depending on the slope and soil type of the managed areas and
thus affect soil dwelling larvae and adult insects. Therefore, some studies sug-
gest retaining the roots of the target plants, rather than complete removal
(Castillo & Smith-Ramírez, 2018) or complete removal leaving litter on
site to protect the soil (Chenot et al., 2018). In most cases studied to date,
insect assemblages recover rapidly after physically removing alien plants
(e.g., Braschi et al., 2021; Magoba et al., 2015).

Freshwater systems, particularly streams and small rivers in dry areas, can
be highly prone to invasion from alien trees. This is the case in South Africa,
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where alien trees in the genera Acacia, Pinus, and Eucalyptus, readily invade
water courses reducing water flow and shading natural habitats (Modiba
et al., 2017). The local freshwater insect fauna is largely adapted to sunny
conditions and can be strongly affected by the invasion of alien trees that
readily outcompete the local flora. A national initiative in South Africa,
known as the Working for Water program, was implemented in 1995
(van Wilgen et al., 1998). Through this program, active physical removal
of invasive alien trees has demonstrated enormous beneficial effects on
native insects, such as on rare and threatened endemic dragonflies (Samways,
2005). What is interesting is that the whole native insect assemblages can
recover, and functional diversity can be restored thanks to the recolonization
by members of the local assemblage still present in the area (Modiba et al.,
2017; Samways & Sharratt, 2010). As the program is implemented at a na-
tional level, there has been a recovery of dragonfly assemblages (Samways &
Grant, 2006) and other freshwater insect fauna (i.e., Ephemeroptera,
Plecoptera, Trichoptera) (Samways et al., 2011) nationally (Magoba &
Samways, 2010).

Nonselective invasive insect trapping
With the advantage of being inexpensive and easy to manufacture, nonse-
lective traps have sometimes been applied for controlling invasive alien in-
sects. For example, the invasive yellow-legged Asian hornet Vespa velutina
has colonized most of France and progressively invaded other western and
central European countries (Barbet-Massin et al., 2020). In the invaded
areas, this invader represents a significant threat to endemic insect fauna
and notably feeds on honeybee foragers returning to their nests (Turchi &
Derijard, 2018). In regions where the yellow-legged hornet population is
too dense, management efforts aim to reduce its expansion and impact
(Castro & Pagola-Carte, 2010; Villemant et al., 2011). A widely used
method promoted by bee-keeping syndicates and associations to manage
the yellow-legged hornet is sugar-beer trapping (Turchi & Derijard,
2018). A mixture of berry syrup, beer, and white winedwhich is supposed
to repel beesdis deposited at the bottom of a plastic bottle, where the upper
third is cut, turned over, and pressed into the lower part. Such devices, un-
fortunately, significantly lack selectivity and catch many native insects: the
yellow-legged hornet represents less than 1% of the average catch when us-
ing this kind of trap (Goldarazena et al., 2015). One trap can catch as many as
30,000 nontarget insects, meaning that four to six small traps catch as many
insects as a yellow-legged hornet colony could prey on (Rome et al., 2021).
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Therefore, nonselective trapping might constitute a threat to native insect
diversity and should be avoided.

Invasive vertebrate removal
Fencing can be used to keep invasive vertebrates out of an area but is often
combined with other methods to clear the fenced area (Courchamp et al.,
2003; Toda et al., 2010). Among the methods used to remove invasive ver-
tebrates, shooting is often adequate for large mammals because it makes the
process highly selective, while trapping or poison application (e.g., of rats
and mice on New Zealand islands) (Chappell, 2008) is generally more suit-
able for removing smaller vertebrates, particularly if their populations are
limited (Courchamp et al., 2003). Both these techniques require good site
accessibility. Trapping may be selective depending on trap size and location,
time of application (day or night), and on whether baits or lures attract the
target species (Courchamp et al., 2003). Also, if trapping is nonlethal,
nontarget species may be released.

On Ogasawara islands in Japan, the green anole, Anolis carolinensis, a tree-
dwelling lizard native to the southeastern United States of America (USA),
was artificially introduced as pets by American soldiers in the mid-1960s
(Hasegawa et al., 1988). They became invasive, reaching population den-
sities of hundreds to thousands of individuals/ha. This led to a huge decrease
in native invertebrate abundances, particularly diurnal insects (e.g., dragon-
flies, butterflies, bees, and longicorn beetles), as well as changes in native
pollinator behavior (as the green anole also feeds on nectar) (Kawakami &
Isamu, 2010). Two methods were combined to remove the green anole
from some areas of these islands: (1) two-piece 1.30 m fences with a 30-
cm Teflon sheet placed above a 1-m stainless-steel mesh fence to restrict
anole movements, which appeared to be ineffective in the long run (Shiho
et al., 2022), and (2) adhesive traps set on tree trunks to catch anoles (Toda
et al., 2010), which may also capture native insects. For the second method,
the loss of native insects through unintentional trapping has been suggested
to be negligible compared to the gain from the reduction in the populations
of the major invasive predator (Toda et al., 2010).

Mowing

Mowing is a management technique that consists of cutting invasive
herbaceous vegetation. This technique is frequently used in open canopy
ecosystems, but can also be used in the first stages of forest restoration
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projects, when vegetation is not woody and can be mowed (Weidlich et al.,
2020). Its timing should be matched to the right phenological stage of the
plants. For example, erect, high-branching populations of yellow starthistle,
Centaurea solstitialis, an annual weed that greatly reduces forage quality of
invaded rangeland, can be effectively controlled when mowing takes place
during early flowering (Benefield et al., 1999). On the other hand, common
ragweed, Ambrosia artemisiifolia, an invasive annual plant with allergenic pol-
len, can be managed by, first, mowing the plants before male flowers bloom,
followed by cuts every 3e4weeks (Milakovic et al., 2014).

The impacts of mowing on native insects depend on the techniques used
to cut and then harvest the plant material. Traditional mowing with scythes
and subsequent racking and manual baling reduce resources for insects and
change their habitats. These approaches probably have a limited impact on
native insects as they provide them with enough time to escape and do not
compact the soil, which thus remains a good habitat quality for ground-
dwelling insects (i.e., for them to move easily, forage, and lay eggs)
(Humbert et al., 2009). On the other hand, motorized mowing may damage
native insects, with rotary mowers being twice as damaging as bar mowers
(Humbert et al., 2010). Tractor wheels can also kill ground insects (Humbert
et al., 2010) and may compact the soil. The damage thus depends on the
mowing process (manual, mechanical, bar, rotary, flail, conditioner), the
species of insect considered, and its life stage (Humbert et al., 2009).

Only a few studies have investigated the effects of mowing native and
invasive plants on native insect communities (Cizek et al., 2012; Steidle
et al., 2022). These studies suggest that the timing of mowing is important
for conserving native insects (Bruppacher et al., 2016). However, consid-
ering the phenology of all native insect species may be too complex. There-
fore, to reduce the negative impacts of mowing on native insects, one option
is to diversify the mowing regime (i.e., applying sequential mowing) (Cizek
et al., 2012). Mobile insects may move from uncut areas to other nearby
areas to find appropriate resources. Indeed, leaving uncut strips of vegetation
can serve as refuges from where insects can recolonize the mown areas
(Humbert et al., 2009). While this approach may be impractical for invasive
alien species control unless they grow in patches, it supports the previous
recommendation of sequential mowing through provision of temporary ref-
uges. Finally, arthropod-friendly mowing machines modified to reduce in-
sect mortality can be used (Steidle et al., 2022).
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Grazing

Grazing (i.e., the consumption of plants by large herbivores) can be
used as a management method to control palatable invasive plants (Firn
et al., 2013). Grazing can greatly alter the composition, richness, physical
structure, and succession patterns of plant communities (Kouba et al.,
2021; Porensky et al., 2016). An adapted grazing strategy can help reduce
invasive plant dominance by (1) reducing the growth, survival, or reproduc-
tion of invasive plants (Popay & Field, 1996) and (2) increasing the cover of
resident native species that may subsequently suppress invasive alien species
through competition (Pywell et al., 2010).

Grazing by large herbivores may influence several components of the
habitat (soil characteristics, vegetation structure, and composition), affecting
abiotic conditions, available resources, and local fauna, with potential conse-
quences for native insect assemblages (Fig. 10.2). Grazing may have direct
positive effects on arthropods such as coprophagous, scavengers, and parasites,
since it may supply resources in the form of dung, carcasses, blood, and living
tissue (Jay-Robert et al., 2008), but these effects have been poorly quantified
(van Klink et al., 2015) until recently (Pryke et al., 2022). However, studies
on the impacts that large herbivore grazing has on native insects and other in-
vertebrates generally demonstrate neutral or negative effects (Bussan, 2022;
Glenny et al., 2022; Tadey, 2015; van Klink et al., 2015; Zhu et al., 2012).
An exception is the effects of rotational management of livestock grazers to
avoid overgrazing, which can promote recovery of native grasshopper assem-
blages (Gebeyehu & Samways, 2003) (see also Chapter 8).

Grazing may directly negatively affect insect diversity and abundance by
unintentional ingestion (particularly insects living within plant structures)
and trampling soil, litter, and vegetation hosting individuals and nests (Black
et al., 2011; Sugden, 1985). By reducing limited floral resources, grazing
may also lead to insufficient forage available to pollinators (Carvell, 2002).
Grazing by livestock may also greatly influence (positively or negatively)
native insect diversity through the modification of vegetation structure
and composition (e.g., plant height heterogeneity) (Zhu et al., 2012), het-
erogeneity of the plant cover (Samways & Kreuzinger, 2001), as well as
the trajectories of plant successions (van Klink et al., 2015) (Fig. 10.2).
Changes in the relative abundance of different plant functional groups
(e.g., favoring plants tolerating high grazing pressure such as grasses) (Black
et al., 2011) might also result in changes in insect functional groups. Overall,
further investigations are needed to assess how native insect richness and
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abundance are affected by grazing regimes applied in the specific context of
alien plant management. A negative effect is expected when grazing inten-
sity and duration are increased to effectively suppress certain invasive plants.
However, some insect species require grazing to maintain their habitatdsee
the case of the endangered Ohlone tiger beetle C. ohlone (Cornelisse et al.,
2013) and grasshopper assemblages (Joubert et al., 2016).

Figure 10.2 A conceptual framework of the mechanistic pathways by which large her-
bivores, directly and indirectly, affect arthropod diversity through grazing by large her-
bivores. Arrows represent mechanisms. The first row of boxes (top) represents biotic and
abiotic conditions that are modified by large herbivores, while the second row of boxes
(bottom) represents the mechanisms operating on arthropod individuals, populations,
and communities. Modified from van Klink, R., van der Plas, F., van Noordwijk, C. G. E.
(Toos), WallisDeVries, M. F., & Olff, H. (2015). Effects of large herbivores on grassland
arthropod diversity. Biological Reviews, 90(2), 347e366. https://doi.org/10.1111/brv.12113.
Drawings E. Buisson and courtesy of S. Le Stradic.
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Chemical compounds

Pesticides
Pesticides are defined as toxic substances of biological or chemical

origin, which are deliberately released into the environment to prevent,
control, or reduce native or alien populations of insects, weeds, rodents,
and fungi, among others. Pesticides are designed to target certain biochem-
ical and physiological characteristics of specific organisms but can sometimes
act directly or indirectly on nontarget organisms. The effects of pesticides on
nontarget native insects have been extensively studied and reviewed
(Capinera, 2018; Kraus & Stout, 2019; Norris & Kogan, 2000; Serr~ao
et al., 2022; Stanley et al., 2016) and depend on time of exposure, toxicity
(which can be dependent on the target or the mode or time of application),
and population and landscape structure.

Herbicides are pesticides designed to target plant biochemical pathways
(e.g., photosynthesis inhibition), and while they can induce the direct mor-
tality of insects at the time of application (Brown, 1987), they tend to have
low levels of direct toxicity to insects. Their effects on insects are often sub-
lethal (e.g., reduced growth or prolonged development time) (Doll et al.,
2022; Freydier & Lundgren, 2016). For example, two herbicides used for
controlling invasive grass species in the USA (fluazifop-p-butyl and sethox-
ydim) have been shown to reduce survival, wing size, pupal weight, and
development time of one native and one exotic butterfly, respectively Icaricia
icarioides subsp. blackmorei and Pieris rapae, through direct toxicity (Russell &
Schultz, 2010). Moreover, indirect effects of herbicides may arise from the
alteration of the availability of plant hosts or from the induction of plant de-
fenses (Norris & Kogan, 2000). Herbicides applied to control specific plant
invasions may also alter the nutrient quality of a wide spectrum of nontarget
plants, and indirectly affect growth and development of feeding larvae and
thus, native insect populations (Agnello et al., 1986). Therefore, if herbicides
have to be applied, we recommend local application, when possible (e.g.,
sprayed precisely on the leaves and stems of the target invasive plants), to
reduce any potential indirect impacts on native insects.

Insecticides are pesticides used to kill, harm, or repel insects. As such,
nontarget insects are more prone to high levels of toxicity from insecticides
than from other pesticides (Guruge & Tanabe, 2001; S�anchez-Bayo et al.,
2011). The use of selective insecticides should preferably be used to avoid
impacts on nontarget insects. If such selective insecticides are not available
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or if they harm nontarget native insects, the implementation of techniques to
reduce risks of exposure (e.g., traps exposing only the target invasive alien
insect, see examples below) must be implemented. For example, to control
the invasion of the parasitic nest fly Philornis downsi (Diptera: Muscidae) in
the Galapagos, cotton fiber treated with a 1% permethrin solution was
made available to birds for building their nests (Knutie, 2014). Darwin’s
finches, which integrate cotton fiber into their nests, had approximately
50% less parasites in their nests and about 30% more nestlings fledging
(Knutie, 2014). Although detrimental effects on potential commensal insects
should be studied, this technique has the advantage of only targeting insects
living in nests built by birds. Another example is developed in Box 10.1.

Box 10.1 Ecological recovery of an island set aside for
biodiversity conservation
The tropical island of Cousine in the Seychelles archipelago was highly invaded
by alien plants. Management actions included the removal of the alien flora and
the implementation of restoration actions aimed at reestablishing native plant
communities. After applying these actions, native insect assemblages, as well
as other invertebrates, were able to recover since some populations had
remained in refuges among the large granitic boulders (Samways et al., 2010).
One of the recovered invertebrates was the charismatic and highly threatened
Seychelles giant millipede Sechelleptus seychellarum, a keystone species that
breaks down the leaves of the native tree Grand devil’s-claws Pisonia grandis
(Lawrence & Samways, 2003).

Some years later, an explosive outbreak of the alien big-headed ant, Pheidole
megacephala, severely disrupted the ecosystem through a close mutualistic rela-
tionship with the alien honeydew-producing soft-scale Pulvinaria urbicola and
the alien mealybug (Dysmicoccus sp.). The ants benefit from the sugar-rich excre-
tions of these Hemiptera, while the latter, in turn, benefit from protection by the
ants against parasitoid and ladybug attacks. The result can be so severe that the
ecologically significant tree Pisonia grandis (a major contributor to litter and a
framework for native sea bird nests) can die off, to the detriment of a whole
range of endemic and other invertebrates and vertebrates. These species are
also and mostly affected by ant direct attack (Gaigher et al., 2011). This major
problem required an immediate solution, with the strategic decision being
made to break the mutualism between the ant and the Hemiptera mutualists
without posing any risk to the native fauna. To target the queen and ensure
collapse of the colony, the highly specific and degradable ant bait hydramethyl-
non was selected. However, because there was an unknown risk to certain
extremely rare and threatened wildlife, including the Seychelles giant millipede,
and two bird species, Seychelles magpie robin and Seychelles fody, the bait
could not be scattered across the landscape. Rather, the ant bait was presented

(Continued)
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Pesticides pose a particular threat to aquatic habitats and, especially, to
aquatic invertebrates (Beketov et al., 2013; Malaj et al., 2014). Pesticides
used for the management of terrestrial invasions can enter aquatic habitats
through terrestrial runoff, or wind-borne drift, and can potentially affect
many aquatic organisms. For example, glyphosate used to control Phragmites
australis invasions in a freshwater coastal marsh in Ontario (USA) had detri-
mental effects on native macroinvertebrate assemblages: herbicide-treated
sites had lower taxonomic richness than invaded or reference sites and
were dominated by Chironomidae (Diptera) (Robichaud et al., 2022).

Pesticides can also be used to control invasive vertebrates, such as rodents,
carnivores, and small herbivores. To be as selective as possible, as discussed
before for ants (Box 10.1), bait should mainly attract the target species and
must be made available to the target species only (Courchamp et al., 2003).
A review on 136 projects controlling invasive rats on islands showed that
77% of the projects used poison as a control method (35% poison alone,
42% combined trapping and poison) (Duron et al., 2017). Fifty-eight percent
of the projects led to a reduction in rat populations, and 51% showed positive
effects on biodiversity (although only 10% of the projects monitored inverte-
brates) (Duron et al., 2017). On the North Island of New Zealand, rat
poisoning led to a threefold increase in the Auckland tree weta (Hemideina
thoracica) (Ruscoe et al., 2013). Whichever way a species is controlled, the
risk of causing further ecological disequilibria must be evaluated (Courchamp
et al., 2003). For example, controlling a top predator, such as cats, may release
pressure on rat populations (i.e., mesopredator release) and therefore increase
the pressure on insects (Courchamp et al., 2003). The control of rabbits in the
United Kingdom (UK) led to grassland encroachment, the decline ofMyrmica
ant species and thus the extinction of the British population of the large blue

Box 10.1 Ecological recovery of an island set aside for
biodiversity conservation (cont'd )
in bait stations constructed from pieces of plastic pipe, sealed at the ends, and
drilled with holes so that only the ant could enter (Gaigher et al., 2012). These
bait stations were highly effective, and within days the ants died off in massive
numbers. Soon after, the Hemiptera populations plummeted as natural enemies,
both parasitoids and coccinellids, rapidly attacked the Hemiptera. Importantly,
this also led to the recovery of many insect herbivores, with the whole ecosystem
being returned to its historic and relatively stable state (Gaigher et al., 2013;
Gaigher & Samways, 2013).
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butterfly Maculinea arion (Manchester & Bullock, 2000). Surprise effects
(e.g., the increase of a species that was maintained by the invasive which is
removed) are also a risk (Courchamp et al., 2003).

Pheromones and other semiochemicals
Semiochemicals are groups of compounds including pheromones and alle-
lochemicals that play important roles in inter- and intraspecific communica-
tion of insects (El-Sayed, 2011; Howse et al., 2013), and many of them are
synthesized artificially. They can be used for pest and invasive alien insect
control notably targeting mating disruption (i.e., the release of large quanti-
ties of insect attractantdoften sex pheromones, to confuse the males and
prevent them from finding females), mass-trapping, and lure-and-kill tech-
niques (i.e., the combination of insect attractant combined with a contact
insecticide) (Brockerhoff et al., 2010; El-Ghany, 2019; Rizvi et al., 2021).

Pheromones are involved in intraspecific insect communication. Traps
releasing sex pheromones are effective in monitoring invasive insect popu-
lations and in detecting new infestations (Lloyd et al., 1981; Raszick, 2021).
Pheromone-baited traps can also be used as part of eradication programs.
They are particularly efficient for the eradication of new incursions of inva-
sive insects, since they have the greatest probability of success against target
species at very low density, which is initially the case after an incursion (El-
Sayed et al., 2009). For example, pheromone-baited trapping, in combina-
tion with insecticide application, played an essential role in eradicating the
boll weevil (Anthonomus grandis subsp. grandis) from the southwest of the
USA (El-Sayed et al., 2009). Sex pheromones also successfully reduced
the spread of the invasive gypsy moth (Lymantria dispar) by more than
50% in the USA by mating disruption when used in combination with other
control approaches, such as aerial applications of Bacillus thuringiensis or diflu-
benzuron (Sharov et al., 2002). The absence of significant adverse effects of
pheromones on the environment (due to their species-specific action) makes
them reliable tools for the effective control of invasive alien insects (Martinez
&Mgocheki, 2012; Thorpe et al., 2006). For example, sex pheromones used
to monitor the alien pest red scale (Aonidiella aurantii) on citrus in South Af-
rica also attract the native parasitoid Aphytis africanus, but not to the extent
that the parasitoid population is rendered ineffective (Samways, 1988).

Allelochemicals are substances released by individuals of a species that
may affect individuals of a different species, allowing interspecific commu-
nication (El-Ghany, 2019). Allelochemicals are involved in chemical
communication between plants, microbes, fungi, and insects (Holighaus &
Rohlfs, 2016; Weir et al., 2004) and can either (1) benefit the receiver at
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the cost of the sender (kairomones), (2) benefit the sender at the cost of the
receiver (allomones), or (3) benefit both sender and receiver alike (syno-
mones) (El-Ghany, 2019). The use of such chemicals can be successful in
the management of insect pests and weeds in agriculture with fewer side ef-
fects than pesticides (Cook et al., 2007; Farooq et al., 2020; Holighaus &
Rohlfs, 2016; Rodríguez & Niemeyer, 2005). However, neither their po-
tential use in controlling invasive species nor their effect on native insect di-
versity has been yet evaluated.

Biological control

Biological control is a method aimed at controlling pests or invasive
alien species through the introduction or use of their enemies (a predator,
a competitor, or a pathogen of the invasive alien species). It embraces two
approaches: (1) Encouraging native natural enemies’ activity, such as that
of native predators and parasitoids, against high population levels of alien
invasive insects or other arthropod species (Gurr et al., 2004), and (2) Delib-
erate introduction of specific natural enemies (biological control agents)
from the same provenance as the target alien invasive species so as to control
outbreaks and sometimes other outbreak species in closely related taxa
(Debach, 1964; Huffaker, 1976; Van Driesche & Bellows, 1996). Biological
control agents of invasive alien insects are usually parasitic or predatory in-
sects, or other taxa such as predatory mites, entomopathogenic nematodes,
single-celled eukaryotic pathogens, bacteria, viruses, or fungi. On the other
hand, the biological control of invasive alien plants mostly uses key antago-
nistic insect species that induce high herbivore pressure (Day & Witt, 2019;
Hill et al., 2020). Control of invasive alien animal and plant species using a
selected biological control agent, usually from the same provenance as the
invasive organism, is known as “classical biological control” (CBC) (Barratt
et al., 2010).

Classical biological control
There are two contrasting issues around CBC that require focus in terms of
the conservation of insect diversity. The first issue is that one of the aims of
CBC is to avoid the use of environmentally harmful pesticides, especially
those that are persistent over time and bioaccumulate in organism tissue.
The second issue concerns the risk attached to CBC agents associated
with their reducing population levels of nontarget species. We now consider
these two issues further.
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Advantages of applying CBC
Van Driesche et al. (2010) used a metaanalysis to evaluate the merits and suc-
cesses of CBC projects against insects and invasive plants in the field of pro-
tection of wild areas. Of the 70 projects they studied, twice as many were
focused on insects than invasive plants, although the complete success rate
was higher against the target insects than the target plants. A total of 81%
of insect projects provided benefits to biodiversity.

A review on the control of invasive mammals listed biological control as
a method that can be more cost-effective than traditional ones (e.g., trap-
ping) particularly on sites that are poorly accessible (Courchamp et al.,
2003). While standard biological control methods can be used (usually
through introducing a predator or a pathogen), sterilization or virus-
vectored immuno-contraception is another option to reduce the reproduc-
tion of invasive vertebrates (Courchamp et al., 2003; Genovesi, 2001). For
instance, the myxoma virus was used to successfully control the population
of the rabbit Oryctolagus cuniculus invasive in the UK, at least for a while.
Some individuals may survive, and the population may develop a genetic
resistance to the virus in the long run (Manchester & Bullock, 2000).

Risks associated with CBC
The advantages of CBC must be weighed against possible risks to nontarget
organisms. However, in the greater scheme of things, the risks of CBC must
be viewed against others, particularly the pervasive adverse effect of pesti-
cides. There is also the morally debatable issue from a purist conservation
perspective that CBC violates “sense of place”, but arguably the invasive
host has already done that (Samways, 2005).

A core issue concerns the level of host specificity of a CBC agent. This is
because most agents are not monospecific. Even among chalcidoid parasit-
oids, which are considered as being among the host-specific biocontrol
agents, only 7 of 45 species introduced into South Africa are monospecific
in their host choice (Prinsloo & Samways, 2001). Predators or competitors
are also rarely monospecific and can cause further ecological disequilibria
(Courchamp et al., 2003). Finally, the introduction of pathogens requires
the absence of risk for nontarget species (Courchamp et al., 2003). For
example, the marine toad Bufo marinus native to Central America mainly
feeds on insects, particularly beetles, ants, and Odonata (Evans & Lampo,
1996). Introduced in Australia in 1935, it now spreads in most of the tropics
and subtropics of the country (Shanmuganathan et al., 2010). It modifies the
abundance, richness, and composition of invertebrate assemblages (including
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insects) and increases predation compared to native anurans because its pres-
ence increases total amphibian biomass fourfold (Greenlees et al., 2006). So
far, seven viruses were identified as lethal to the marine toad, but none were
species-specific, and their use in biological control would have also killed
native frogs; therefore, efforts to find a way to control the marine toad by
biological means have not been successful so far (Shanmuganathan et al.,
2010).

The parasitoid Microctonus aethiopoides which was introduced into New
Zealand to control the weevil forage pests Sitona discoideus and Listronotus
bonariensis attacked 13 nonnative weevil species (Barratt et al., 1996).
Then there is the controversial case of the polyphagous egg parasitoidOoen-
cyrtus erionotae, which, despite early concerns, turned out to be host specific
to the banana skipper Erionota thrax in Papua New Guinea. What happens in
the laboratory does not necessarily indicate what will happen in the field.
While the ladybug Coccinella septempunctata will feed on eggs of the threat-
ened North American lycaenid Erynnis comyntas in captivity, it does not
do this in the field (Horn, 1991).

Host-switching can also occur. The parasitoid Tamarixia dryi was intro-
duced on La Réunion Island, Indian Ocean, to control the alien psyllid Tri-
oza erytreae which very unusually eliminated its intended target. It then
switched to the native psyllid Trioza litseae (eastopi) but did not eliminate it
(Aubert & Quilici, 1983).

As regards weed biological control, among 1517 releases made using 457
agent species, only 8% resulted in nontarget attacks, mostly on plant species
in the same family as the target weed. About half of the nontarget attack
cases were predicted/predictable, with methodology improving over time.
Overall, weed biocontrol has been largely successful at ameliorating the
high impact of invasive aquatic and terrestrial plants (Hinz et al., 2019).

While there are numerous examples of unintended impacts of intro-
duced biocontrol agents, biological control methodology, guidelines and
protocols have greatly improved over the last decades. As such, biological
control is now a much safer method for managing the invasion of some alien
species (Barratt et al., 2018).

Rationalizing biological control in a conservation context
Overall, while there are several recorded cases of CBC agents impacting
certain nontarget insect species, there has been little research in the field
on the topic and have been restricted to just a few species (e.g., for insects)
(Boettner et al., 2000; Howarth, 1991). Nevertheless, guidelines are
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improving, with, for example, Van Lenteren et al. (2003) pointing out that
predatory insects carry more risk for nontargets than host-specific parasitoids.
These considerations require a wider perspective and encourage (1)
increasing natural enemy activity of both native and specially selected exotic
species, (2) increasing landscape complexity and heterogeneity to encourage
natural enemy diversity, and (3) improving habitat for insects with various
functional roles (Shackelford et al., 2013). In turn, risks are being reduced
through improvement of methodology associated with both prerelease
and postrelease of agents, in particular by ascertaining the level of risk posed
to native biota associated with the release of an agent (Fisher et al., 1999;
Follett & Duan, 2012; Gurr & Wratten, 2002; Hokkanen & Lynch, 2003;
Louda et al., 2003; Messing & Wright, 2006; Van Driesche et al., 2016,
2020; Van Driesche & Hoddle, 2017; Van Lenteren et al., 2006).

Conclusions

The control of invasive alien species is usually followed by an
improvement of ecosystem function and biodiversity. The recovery of
native insect diversity after the management of terrestrial alien species is
far from being systematically assessed. The speed of recovery of native insect
diversity is dependent on the degree to which the invader has modified the
environment (Harris et al., 2004), on the landscape and regional context
(e.g., on the connectivity with uninvaded areas having the natural capital
of intact communities that can resupply the alien-cleared areas) (Samways
& Sharratt, 2010) and on the method used to control the invasive species.

Alien species management methods can affect nontarget native insect di-
versity (1) directly by decreasing the fitness of insect populations (through
direct death, competitive displacement, or reduced reproduction), or (2)
indirectly by modifying ecosystem components and functions such as vege-
tation composition and structure or disrupting trophic and nontrophic inter-
actions. The impact of selective management methods (e.g., patchy
prescribed burns, adequately planned grazing, or other instances of physical
removal) is expected to be limited for nontarget species, and such methods
should be prioritized over nonselective methods.

Nonselective methods, such as prescribed burning, can affect native in-
sect taxa and slow down the recovery of insect diversity. Precautions should
be taken to mitigate the impacts of such methods, like creating or conserving
refugia (e.g., untreated zones), or selecting the appropriate timing for appli-
cation (e.g., when insects display less vulnerable life stages). Another
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emerging way to lessen the effect of management methods implying the
suppression of alien vegetation is to restore the native vegetation cover
that provides food resources and refuges (especially for breeding and resting)
for native insects (Harmon-Threatt & Chin, 2016). Although we focus
mainly on the management of terrestrial invasions, it is expected that the
management of other invasive taxa (e.g., aquatic plants, freshwater crusta-
ceans, or vertebrates) also affects the conservation of native insects.

In addition to the traditional management methods reviewed in this
chapter, new techniques to control alien species are emerging, such as the
use of predator or alarm calls to exclude a target invasive alien vertebrate
species from an area (Shiho et al., 2022), the release of sterile individuals
to target the reproduction of invasive alien species, the use of RNA interfer-
ence to inhibit targeted genes in the cells of plants and animals, or the
development of species-specific genetically modified pathogens (GMO;
Dehnen-Schmutz & Novoa, 2022). While these techniques appear prom-
ising with lower risks to native species, their effectiveness in field trials still
needs to be evaluated (Courchamp et al., 2003; McLaughlin & Dearden,
2019; Shanmuganathan et al., 2010).
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Introduction

We are surrounded by biodiversity, including plants, animals, and
many other organisms. Most citizens have some awareness of this fact, but
only a small number can distinguish as different (and name) the many species
around them. This lack of knowledge or perception is particularly acute for
plants (“plant blindness”), with people frequently unable to notice plants in
their environment (Wandersee & Schussler, 1999). Insects and other small
animals are also commonly unseen and unnamed by people (Knapp,
2019). If to this we add the notion that the range of any species can be
altered by human intervention (i.e., the species also occurs outside the native
range), we realize that the knowledge/perception of the native range of spe-
cies among citizens is even lower. Common and more charismatic species
often “elude” this unfamiliarity, and people can usually recognize them,
give them names, and have a notion of their native range distribution (Crall
et al., 2011; Kelling et al., 2015; Swanson et al., 2016), e.g., Asian hornet.
These “gaps of knowledge” about the perception of surrounding nature
represent a challenge for the engagement of citizens in monitoring biodiver-
sity together with scientists or when citizens are called to action to safeguard
biodiversity. Citizen science is defined by the European Commission Green
Paper on citizen science as the “general public engagement in scientific
research activities where citizens actively contribute to science either with
their intellectual effort, or surrounding knowledge, or their tools and
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resources” (Socientize Consortium, 2013). Citizen science (also known as
community science, community-based environmental monitoring,
crowd-sourced science, participatory monitoring, volunteer monitoring,
etc.) has boomed in the last few decades and has the potential to provide
a significant change in the global monitoring of biodiversity (Chandler
et al., 2017; Johnson et al., 2020; Pocock et al., 2018; Theobald et al.,
2015). Still, the use of citizen science around the world and across taxo-
nomic groups is very heterogeneous, with Europe and North America,
and invertebrates, birds, and plants standing out (Chandler et al., 2017;
Gardiner & Roy, 2022; Theobald et al., 2015). Several factors contribute
to the recent increase in citizen science. For example, technological ad-
vances that facilitate dissemination and data collection, the potential to
collect data at larger spatial and temporal scales and finer resolutions, the
learning from the experience of longstanding citizen science projects, or
the diversity of approaches and engagement methods (Pocock et al., 2014;
Silvertown, 2009). Biodiversity reporting is one of the most popular types
of citizen science initiatives. It contributes to different themes such as con-
servation biology, ecological restoration, climate change, biological inva-
sions, and water quality monitoring. Additionally, biodiversity reporting
can focus on different taxonomic groups (e.g., birds, insects, or plants), spe-
cies status (e.g., invasive, endangered), species life histories (e.g., aquatic or
terrestrial species), and approaches (e.g., short-term events such as BioBlitzes
- defined as a massive biodiversity surveying during a brief period in a spe-
cific place by citizens and scientists, giving citizens an opportunity to get
involved and contribute to different scientific research projects - or geolo-
cation platforms that gather volunteer data along time) (Chandler et al.,
2017; Pocock et al., 2018; Theobald et al., 2015). In particular, the use of
the internet to view, gather, or share geospatial data (i.e., web mapping)
has increased the importance of citizen science both in science communica-
tion and in gathering large amounts of data (Adriaens et al., 2015; Good-
child, 2007; Price-Jones et al., 2022). In the last few years, several reviews
identified around 400e500 citizen science projects related to biodiversity
monitoring (Chandler et al., 2017; Pocock et al., 2017; Theobald et al.,
2015). Today, these numbers are expected to be higher as the number of
projects continues to increase (Pocock et al., 2017; Price-Jones et al.,
2022; Theobald et al., 2015).

One research area in which citizen science has clearly witnessed an in-
crease in the last decade is biological invasions, with reporting of invasive
alien species (IAS) by citizens contributing not only to science but also to
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policy (Adriaens et al., 2015; Johnson et al., 2020; Price-Jones et al., 2022;
Roy et al., 2018; Theobald et al., 2015). IAS are a subset of alien species that
reproduce without direct human intervention, increase their distribution
along the territory, and alter the ecosystems they invade (Richardson
et al., 2000). These IAS often threaten biodiversity, the economy, public
health, water resources, and the balance of ecosystems (Diagne et al.,
2021; IPBES, 2019; Py�sek et al., 2012, 2020, Simberloff et al., 2013). All
over the world, IAS have raised the awareness of scientists and many stake-
holders (e.g., land managers, decision-makers, or politicians). However,
although the perception of environmentally aware citizens may be some-
what different (Cordeiro et al., 2020), a large part of citizens are still mostly
unaware of IAS. For instance, a European Union inquiry showed that only
32% of European citizens consider biodiversity to be “very much” threat-
ened by IAS (European Commission, 2019) and, in South Africa, the
knowledge of invasive alien plants (IAPs) among the public is considered
to be relatively poor (Shackleton & Shackleton, 2016). Nevertheless, citizens
play a key role in introducing, moving, or using alien species (including IAS)
or, on the contrary, may actively contribute to the control of IAS and adopt
simple measures to prevent the introduction and spread of new species.
Therefore, citizen science projects that include IAS may represent a success-
ful strategy that raises public awareness and increases people’s perception of
IAS and, simultaneously, collects important scientific data to improve IAS
science and management. The contribution of citizens to the early detec-
tion, surveillance, and management of IAS is an opportunity that can help
not only scientists but also governmental agencies (Ricciardi et al., 2017).

A European CO-operation in Science and Technology (COST) action
was launched in 2018 focusing on the huge potential of citizen science to
improve data flow and knowledge on alien species by ensuring effective
and high-quality societal engagement with the subjectdCOST Action
CA17122 ALIEN CSI (Roy et al., 2018). This COST action also addresses
multidisciplinary research questions in relation to developing and imple-
menting citizen science and advancing scientific understanding of alien spe-
cies dynamics while informing decision-making, specifically, relevant
legislation such as the EU Regulation 1143/2014 on IAS. In Europe alone,
more than a 100 citizen science initiatives, including alien and/or IAS, are
underway, some since 2005 (Price-Jones et al., 2022). In particular, of the
more than 500 initiatives listed by Theobald et al. (2015) around the world
(although 89% of projects were in North America), 24% addressed IAS.
However, several challenges remain with regard to the accessibility of
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data, which could be made more open, e.g., by being shared on platforms
such as GBIF - Global Biodiversity Information Facility, and following
FAIR data principles - Findability, Accessibility, Interoperability, and Reus-
ability - data principles. Additionally, when analyzing the use of citizen sci-
ence data by scientists, only a part of such data is in fact used (Encarnaç~ao
et al., 2021; Johnson et al., 2020; Price-Jones et al., 2022; Theobald et al.,
2015). Nonetheless, the use of data collected in citizen science projects is
increasing. For example, to plan a more strategic collection of citizen science
IAS data (César de S�a et al., 2019), to visualize and model the spatial distri-
bution of IAS (Dinis et al., 2020; Feldman et al., 2021; Martins et al., 2016;
Matutini et al., 2021), and to improve knowledge on behavioral (animals) or
phenological (plants) characteristics of species (Johnson et al., 2020). More
importantly, even if data are not used by scientists, it can be of great rele-
vance and be used for other purposes by managers or policymakers, such
as for early detection of new IAS (Thomas et al., 2017) or implementing
policies or support decision-making (Groom et al., 2019).

Many IAS citizen science projects are nowadays based on web þ smart-
phone app mapping platforms, frequently as part of web portals (Table 11.1).
Some are exclusively focused on IAS (e.g., EASINdEuropean Alien Species
Information Network, which officially supports the EU Regulation 1143/
2014), while others are part of wider biodiversity portals that include invasive
and noninvasive species (e.g., iNaturalist). Some projects are dedicated to a
particular species or a small group of species (e.g., Vespa velutinadSTOPvespa
and Asian Hornet Watch; Halyomorpha halysdBug Alert Cyprus; ladybirdsd
UK Ladybird Survey; Cortaderia selloanadLIFE Stop Cortaderia, etc.),
focusing the audience’s attention on a single or few species that must be
clearly identified by the public. Other projects include lists of species (e.g.,
INVASORAS.PT or EASIN), an entire particular taxon [e.g., alien insects
in GreecedAlientoma; birds (e.g., eBird); plants (e.g., Pl@ntNet);
ornamental IAP before they escape from gardens (e.g., UK Plant Alert)] or
all taxa such as iNaturalist mentioned above. Many species are generally
unknown to most citizens and specially designed projects need to include
strategies to give the target audience identification skills. Tools and strategies
to teach how to recognize and attribute a correct name to species are
extremely necessary since this will increase the accuracy of collected data
(Goodchild, 2007). The acquisition of skills can occur before or during the
participation in the citizen science project. The latter is most frequently
used, and projects include species factsheets, workshops for the target audi-
ence, or social media communication, not only to increase identification skills
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Table 11.1 Examples of websites and smartphone applications used for citizen science initiatives that include monitoring of invasive
alien species (IAS); some of them are specific for IAS (either lists of species or individual species), while others target species in
general, which includes IAS.
Scope Target Project name Continent (Country) Link

Invasive alien species All taxa EASINdEuropean Alien
Species Information
Network

Europe (EU) https://easin.jrc.ec.europa.eu/
spexplorer

All taxa EDDmapS North America (US) https://www.eddmaps.org/
All taxa iMapInvasives North America (US) https://www.imapinvasives.

org/
All taxa Life ASAP Europe (IT) https://play.google.com/

store/apps/details?id¼com.
ticmediaart.asapp

Cortaderia selloana LIFE Stop Cortaderia Europe (ES, FR, PT) https://cortaderia.cm-gaia.pt/
BiodiversityRest/

Halyomorpha halys Bug Alert Cyprus Europe (CY) https://martinoulab.weebly.
com/bug-alert-cyprus.html

Harmonia axyridis Chinita arlequin South America (CL) http://www.chinita-arlequin.
uchile.cl

Harmonia axyridis Vaquita asi�atica multicolor South America (AR) https://sites.google.com/a/
comahue-conicet.gob.ar/
vam/home

Hesperomyces virescens Bettle Hangers (parasite of
Harmonia axyridis)

North America (US) http://beetlehangers.org/

Mosquitoes Invasive Mosquito Project North America (US) http://www.citizenscience.us/
imp/index.php

Mosquitoes Mosquito Alert Global http://www.mosquitoalert.
com/en/

Plantae Plantas Invasoras em
Portugal/
INVASORAS.PT

Europe (PT) https://www.invasoras.pt
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Table 11.1 Examples of websites and smartphone applications used for citizen science initiatives that include monitoring of invasive alien
species (IAS); some of them are specific for IAS (either lists of species or individual species), while others target species in general, which
includes IAS.dcont'd
Scope Target Project name Continent (Country) Link

Plantae UK Plant Alert Europe (UK) https://plantalert.org/
Vespa velutina ALA Europe (ES) https://play.google.com/

store/apps/details?id¼com.
ala&hl¼es&gl¼US

Vespa velutina Alien Hornet Europe (AT) http://www.alien-hornet.org
Vespa velutina Asian Hornet Watch Europe (UK) https://play.google.com/

store/apps/details?id¼uk.ac.
ceh.hornets&hl¼en

Vespa velutina AvisAp Europe (ES) http://www.avisap.es
Vespa velutina Le Frelon asiatique Europe (FR) http://frelonasiatique.mnhn.

fr/
Vespa velutina Life StopVespa Europe (IT) http://www.vespavelutina.eu
Vespa velutina StopVelutina Europe (IT) http://www.stopvelutina.it
Vespa velutina STOPvespa Europe (PT) http://stopvespa.icnf.pt/
Vespa velutina VeluMap Europe (ES) https://play.google.com/

store/apps/details?id¼app.
xaora.velumap&hl¼es_
419&gl¼US

Vespa velutina Vespa velutina Europe (ES) https://play.google.com/
store/apps/details?id¼vespa.
velutina&hl¼en_
US&gl¼US

Vespa velutina VespAPP Europe (ES) http://vespapp.uib.es
Native and alien/
invasive species

All taxa Artportalen, Species
Observation System

Europe (SE) https://www.artportalen.se/

All taxa Atlas of Living Australia Australia https://www.ala.org.au/
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All taxa Biodiversidad Virtual Europe (ES, PT),
Latin Am.

https://www.
biodiversidadvirtual.org/

All taxa Biodiversitéit zu
Lëtzebuerg

Europe (LU) https://map.mnhn.lu/

All taxa Biodiversity Maps Europe (IR) https://biodiversityireland.ie/
All taxa EcoRegistros Global https://www.ecoregistros.org/

site/index.php
All taxa iNaturalist Global https://www.inaturalist.org
All taxa iRecord Europe (UK) https://irecord.org.uk/
All taxa iSpot: your place to share

nature
Global https://www.ispotnature.org/

All taxa Waarnemingen.be Europe (BE) https://waarnemingen.be/
Aves eBird Global https://ebird.org/
Aves Southern African Bird

Atlas Project 2
Southern Africa http://sabap2.birdmap.africa/

Insecta Alientoma Europe (GR) https://alientoma.myspecies.
info/en

Insecta, spiders and
other related taxa

Bug Guide North America (US,
CA)

https://www.bugguide.net

Ladybirds The Lost LadyBug project North America (US,
CA, MX)

http://lostladybug.org

Ladybirds UK Ladybird Survey Europe (UK) https://www.coleoptera.org.
uk/coccinellidae/home/

Plantae Pl@ntNet Global https://plantnet.org/en/
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but also to engage participants. Such projects benefit from technological ad-
vances, such as Internet tools, smartphones with built-in GPS to record pre-
cise positioning, smartphone apps to facilitate the process of data acquisition,
and registration or artificial intelligence tools to help with species identifica-
tion (van Klink et al., 2022). Those tools not only allow citizens to be
more easily engaged with science, potentially becoming better and more
frequent data contributors, but also increase data accuracy (Lemmens et al.,
2021; Newman et al., 2012; Teacher et al., 2013).

Citizen science initiatives involving invasive alien
species and insects

To illustrate the diversity and specificity of projects related to IAS and
insects, a few citizen science initiatives were selected and are discussed in
more detail in this chapter. The statistics mentioned for the different initia-
tives refer to data as of January 2022. These initiatives include IAS in general,
invasive (and native) insects, IAP, and insects used as biological control
agents against IAP.

Use of a global citizen science initiative for reporting
biodiversity, including but not dedicated to IAS: iNaturalist
iNaturalist is one of the world’s most popular citizen science platforms, aim-
ing to connect people to nature and generate scientifically valuable biodiver-
sity data, available since 2011. This is a joint initiative of the California
Academy of Sciences and the National Geographic Society, but many other
national and regional organizations participate in the iNaturalist Network.
Data can be freely downloaded from the site, and research-grade observa-
tions are also indexed by GBIF, making it easy for researchers, managers,
or anyone interested to access the data. Observations that achieve the
research-grade level were verified by other users, which increases the accu-
racy of identification; still, this does not guarantee 100% accuracy and these
data need to be used with caution, especially for species that are difficult to
identify from photographs. Despite not focusing specifically on IAS or in-
sects, iNaturalist hosts hundreds of local (e.g., Texas Invasives, Invasive
Plants of Siberia, South Africa’s Invasive Alien Trees, Invasive Reptiles of
Florida, Mediterranean Insects, Insects of America) and worldwide (e.g.,
Major Invasive Plant Species in Protected Areas Globally or Global Insects)
projects about such species. The platform is used worldwide and has over 4.8
million users (i.e., people who have registered on the platform) with over
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138,000 of which are active (i.e., users that submit observations with some
regularity) and over 101 million registers (i.e., species observations
submitted).

iNaturalist overcomes the difficulty of species identification with artifi-
cial intelligence tools that suggest species names based on the similarity of
captured images with the images available in the platform’s database. Addi-
tionally, it resorts to crowdsource identifications, where other users can sug-
gest, validate, or correct species identifications. Data from iNaturalist are
frequently used in the scientific literature, as reflected in over 2100 citations
in GBIF. Even citizen scientists that do not know that a certain species is
invasive can provide data about it. Yet, when this happens, the goal of
increasing people’s perception of IAS may not be achieved: citizens photo-
graph the species, available tools help to give it a name, and its invasive status
is not acknowledged right away, although information on the range of the
species is readily provided and additional information can be accessed later.
Moreover, the invasive status in a particular territory may be partially lost if
there is no IAS project for the region. Despite this, the reach of iNaturalist is
outstanding and data gathered on IAS (and also insects in their native range)
can still be used when researchers, and others, look for it specifically. For
example, the platform INVASORAS.PT (see below) created a project in
iNaturalist in 2019, and although this project is more recent than the original
INVASORAS.PT (2013) and does not include dedicated strategies to pro-
mote it, it has already gathered over 19,500 sightings of IAP, done by 2894
citizen observers, with the additional involvement of 1035 citizens that
confirmed identifications. Interestingly, the top 10 of most registered IAP
on both platforms share seven species, indicating that people register more
the species that are more frequent and easier to recognize in the region.

An example of an invasive alien insect with many records on iNaturalist
is the brown marmorated stink bug (H. halys): 31,081 research-grade obser-
vations. This Asian species has been introduced in several regions, being
invasive mainly in the United States and several European countries where
it has significant economic and ecological impacts (Leskey & Nielsen, 2018).
Looking at the records in iNaturalist (iNaturalist, n.d.) (Fig. 11.1), it has been
frequently observed outside its native range. Although it is not immediately
obvious for someone not aware of its invasive status that this may be an IAS
outside the native range, by clicking on the species name, it is possible to ac-
cess such information retrieved from Wikipedia. Also, once the species is
identified, a pink exclamation mark appears next to the species name and
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when clicking on it some information about the range of the species be-
comes available, although it does not separate IAS from other alien species
(not invasive).

Use of citizen science to monitor and learn about a
charismatic invasive alien insectdharlequin ladybird (and its
native relatives)
Ladybirds are generally popular, very charismatic, and relatively easy to iden-
tify insects, making them a good target for citizen science projects. Harmonia
axyridis (harlequin ladybird) is a native Asian ladybird that has been intro-
duced in many countries as a biological control agent against aphids and coc-
cids of many crops. Several decades after its introduction, it was found
spreading in the wild and nowadays it is established and considered invasive
in countries from the Americas, Europe, Africa, and New Zealand, threat-
ening native ladybirds (see Chapters 6 and 9 for more information).

Figure 11.1 Distribution records (both in native and alien ranges) of the invasive brown
marmorated stink bug (Halyomorpha halys) on the citizen science platform iNaturalist.
Distinguishing the places where it occurs as native or alien is not obvious for someone
not aware of its origin, but by clicking on the species name it is possible to access such
information (top right box). From iNaturalist. (n.d.). Brown marmorated stink bug
Halyomorpha halys. Retrieved 7 February 2023. Available from: https://www.inaturalist.
org/taxa/81923-Halyomorpha-halys and photograph courtesy of Pedro Lopes.
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Numerous citizen science initiatives were launched in many countries
around the world to map H. axyridis, including or not, other ladybirds.
Several projects are based on iNaturalist or in data mining from social net-
works (such as Flickr, Twitter, Instagram, naturalist Facebook groups,
etc.), but projects with dedicated platforms and apps are also common. A
few citizen science projects are analyzed below: the UK Ladybird Survey
(that encourages the recording of native ladybirds and includes Harlequin
Ladybird Survey), the Chinita arlequin, from Chile, and the Vaquita asi�atica
multicolor, from Argentina (more details on Table 11.1).

The UK Ladybird Survey (2005etoday) is hosted by the Biological Re-
cords Centre (BRC)/UKCentre for Ecology & Hydrology. This was one of
the first citizen science projects of its kind and gathered over 48,510 records
of H. axyridis, including life stages information during the period 2003e16
(Brown et al., 2018). To facilitate public participation, the smartphone app
iRecord Ladybirds was launched in 2013. This long-term project was able to
innovate through time and greatly increased the knowledge of the distribu-
tion and ecology of native and introduced ladybird species in the United
Kingdom. In 2019, a European Ladybird app was developed building on
this app (Skuhrovec et al., 2021).

The project Chinita arlequin (2008etoday) is promoted by researchers
of the University of Chile and Pontificia Catholic University of Chile,
and it is one of the first citizen science initiatives created to map
H. axyridis in South America. Any citizen can contribute with a georefer-
enced observation in an online survey, which is then validated by specialists.
The web platform includes information about the diversity of native lady-
birds and how to distinguish H. axyridis from the native species. Also, it of-
fers an updated map with the distribution of H. axyridis across Chile. From
2008 to 2015, 1687 records were gathered with a 95% identification success
rate for H. axyridis (Grez et al., 2016), and 4988 records were received up to
2020 (Tania Zaviezo, personal communication).

The Argentinean project Vaquita asi�atica multicolor (2018etoday) is a
more recent project promoted by researchers at the National University
of Comahue-CONICET. Users can submit observations ofH. axyridis using
multiple forms: uploading georeferenced observations directly on an online
form hosted on the project webpage, using a project on iNaturalist, and
sending registers directly via Facebook, WhatsApp, or email. From June
2018 to July 2019, 275 users reported 370 records, 93% of them correspond-
ing toH. axyridis. Interestingly, these early results revealed the high potential
of WhatsApp as a citizen science tool, which is the second preferred option
after iNaturalist (Werenkraut et al., 2020).
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Citizen science has also been used to monitor a parasite of H. axyridis,
showing to be a promising tool to complement the usual mapping strategy
of this species. The Laboulbeniales fungus Hesperomyces virescens is an ecto-
parasitic fungus of ladybirds, affecting both native ladybirds and
H. axyridis. Researchers from Harvard University launched the project bee-
tle hangers (2002etoday) to follow the spread of the fungus onH. axyridis in
the United States of America (Table 11.1). This project encourages citizens
to submit records of infected ladybirds on iNaturalist, BugGuide, and by
email; it additionally gathers records from the literature. All records are ul-
timately validated, combined in a single dataset, and shown in a web-GIS
available on the webpage. A total of 163 records of H. virescens were ob-
tained during the period 2002e2018, 104 from iNaturalist and 59 from
BugGuide (Haelewaters et al., 2019).

Use of citizen science to detect (and control) invasive alien
insects that threaten native insectsdVespa velutina in
Europe
The Asian yellow-legged hornet (V. velutina) is a native Chinese social wasp
that has been introduced in many European countries (Demichelis et al.,
2014; Laurino et al., 2022; Tamisier et al., 2006) where it becomes invasive.
With a high climatic tolerance, prolific offspring, and a high dispersal rate of
around 80 km per year, the species spreads quickly, being responsible for a
panoply of negative effects on native pollinators (Laurino et al., 2020),
ecosystem services (Fedele et al., 2019), and human well-being (de Haro
et al., 2010) (see Chapter 6 for more information).

Despite the significant efforts of stakeholders and managers to contain
and reduce the spatial distribution of the species, it has not been easy to
detect it sufficiently early in new places or track the real-time spread. To
try to overcome these difficulties, several dedicated citizen science projects
have been created since the first record of V. velutina in France (Tamisier
et al., 2006). While some projects take advantage of other existing platforms
for biodiversity monitoring such as iNaturalist, Biodiversidad Virtual, or
iRecord, many dedicated web and/or smartphone applications were created
(see Table 11.1). These new dedicated web and smartphone applications
include not only the reporting of observations, but the destruction or inac-
tivation of nests, sharing similar workflows: (a) citizens report an observation
of a wasp or nest, (b) specialists validate the observation, and (c) trained staff
(e.g., civil protection authorities, firefighters, pest control companies, etc.)
destroy the nests (Carvalho et al., 2020).
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The Vespa-Watch project (2017etoday) in Belgium is supported by the
Research Institute for Nature and Forest (INBO) together with the Honey-
bee Valley (Ghent University). This project aims to track the invasion of
V. velutina and monitor the succes of management actions, using iNaturalist
and BioBlitzes to collect both records of V. velutina and other invasive hor-
nets (e.g., Vespa mandarinia, Vespa orientalis) or native look-alike insects such
as native wasps, bumblebees, or hornet flies. Until January 2022, 72 volun-
teers reported approximately 1820 occurrences of V. velutina.

An example of a project that developed its own dedicated platform and
app is the Portuguese STOPvespa (2012etoday) which started 1 year after
the arrival of V. velutina in Portugal (Grosso-Silva & Maia, 2012). STOP-
vespa is managed by the Institute for Nature Conservation and Forests
(ICNF) and the National Institute for Agrarian and Veterinarian Research
and aims to compile and centralize data on this species, receiving georefer-
enced contributions from municipalities and citizens. Observations are vali-
dated by certified municipality members, and the nests are destroyed by
trained personnel. In this project, the online records are made available
only after confirmation and destruction of the nests in the field. From
2012 to February 2020, a total of 53,362 nests were recorded (Carvalho
et al., 2020).

The LIFE STOPVespa project (LIFE14/NAT/IT/001128 STOP-
VESPA, 2015e19) has been led by several Italian research and national in-
stitutions together with beekeepers with the main aim of containing the
spatial spread of V. velutina in some northern Italian regions after its detec-
tion in 2013 (Demichelis et al., 2014). In this case, a monitoring network
based on the trapping and/or the georeferenced observations reporting
the presence of V. velutina in apiaries or nature by beekeepers and citizens
was established. This monitoring network located 2086 nests and 1752 of
these were destroyed between 2015 and 2018.

Until now, only two places in Europe were able to eradicate V. velutina:
Majorca (the Balearic Islands, Spain) in 2020 (Leza et al., 2021) and the
United Kingdom (Jones et al., 2020) in 2016, both with valuable contribu-
tions from citizens and after timely, early implementation of intensive detec-
tion and control programs. In 2016, 1 year before the first detection in
Majorca (Leza et al., 2018), the University of Balearic Islands and the local
administration established the citizen science project VespAPP (Leza et al.,
2021), based on a website platform and a dedicated Android app. Citizens
were engaged through several outreach events, which resulted in the sub-
mission of 1024 occurrences from June 9, 2016, to March 15, 2020, but
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only 8% were confirmed as V. velutina. These results allowed the removal of
58% of the island’s nests, contributing to the eradication of the species in
2020.

Use of citizen science to report invasive alien plants that
(may) affect insects: INVASORAS.PT
Invasive plant species are increasingly more frequent, and the changes they
induce in ecosystems include the transformation of insect communities
(Bezemer et al., 2014; L�opez-N�u~nez et al., 2017). The distribution of these
species may change quickly in some situations, making it difficult for scien-
tists to keep distribution maps updated (César de S�a et al., 2019). Hence, cit-
izen science can be a major contributor to gathering more data at larger
spatial and temporal scales.

The platform INVASORAS.PT (Marchante et al., 2017) is managed by
researchers from the Centre for Functional Ecology, University of Coimbra,
and the Agrarian School of Polytechnic Institute of Coimbra, and asks cit-
izens to submit sightings of IAP in Portugal aiming to raise awareness about
biological invasions and engage citizens in the prevention and control of
IAS. The platform has been available since March 2013 and includes a
web app and smartphone apps (for Android and iOS, freely available) that
gradually build up an online map of 72 IAP species. It targets the general
novice audience, but also experts and stakeholders. To assist users in the
identification of species, a field guide was edited and the website includes
detailed species factsheets (Marchante et al., 2014). Additionally, to engage
citizens and maintain participation, social media accounts were created, and
diverse activities are regularly organized, e.g., workshops, talks, webinars,
courses, volunteers’ camps, etc. Data are open access and shared with
GBIF and EASIN. Since 2013, more than 26,300 sightings have been sub-
mitted and validated by around 1060 active users. The number of registers
per month (Fig. 11.2A) and per species (Fig. 11.2B) is quite variable. Peaks
are generally associated with flowering of easily recognizable species, such as
Acacia spp., Oxalis pes-caprae, and C. selloana that makes them easier to spot,
and to establish awareness campaigns. In some cases, citizens have been of
great help in the early detection of IAP recently arrived or localized, e.g.,
Lagarosiphon major or Fallopia japonica. Data have been used for several pub-
lications (César de S�a et al., 2019; Dinis et al., 2020; Martins et al., 2016),
including 145 citations on GBIF. After almost a decade, the platform has
contributed significantly to the knowledge of the distribution of IAP in
Portugal, but after the initial funding (2013), much of the work
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(engagement, sightings validation, basic maintenance, data curation, etc.) is
on a voluntary base, and several challenges remain to ensure fundraising to
maintain the platform and retain users.

Use of citizen science to monitor biocontrol agents that are
insects: Trichilogaster acaciaelongifoliae against Acacia
longifolia
Postrelease monitoring of biocontrol agents (often insects) is crucial to eval-
uate their spread and effectiveness and to assess direct nontarget effects, but
long-term postrelease evaluation programs are often neglected or under-
funded (Schaffner et al., 2020). One way to increase the scale of monitored
areas is to include the contribution of citizen scientists. Yet, to boost citizens’
collaboration, monitoring protocols may need to be adapted and simplified
with the prejudice of some information (Morin et al., 2009).

Some freeware applications allow the creation of fully customized forms,
such as Epicollect5 (Gohil et al., 2020). This mobile data gathering tool has
an associated web application that simplifies the construction of complex
data forms (Aanensen et al., 2014). Additionally, this tool allows multiple users
to upload data (including GPS and media) on a single project web database,
making it a useful tool also for citizen science. Using Epicollect5, a project
(“Registo de Trichilogaster acaciaelongifoliae”) was created by researchers of
the Center for Functional Ecology, University of Coimbra, and Agrarian
School of the Polytechnic Institute of Coimbra to survey the establishment
of the biocontrol bud-galling wasp Trichilogaster acaciaelongifoliae, introduced
in Portugal in 2015 to control Acacia longifolia (L�opez-N�u~nez et al., 2021).
The main purpose of the project is to collect the monitoring data of the galls
of T. acaciaelongifoliae, including their presence and absence following a struc-
tured approach (Fig. 11.3). Most of the requested information is collected by

Figure 11.2 Validated sightings submitted voluntarily by citizen scientists to the plat-
form INVASORAS.PT that geolocates invasive alien plants in Portugal. (A) Number of
sightings through time and (B) top 10 registered species.
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selecting or updating predetermined options, including habitat, location,
identification of the plant species, presence/absence ofT. acaciaelongifoliae galls,
number of galls, a brief characterization of the galls, etc. The absence of galls in
A. longifolia is also requested to evaluate dispersion over time, as well as their
presence in other plants, native or not, to confirm the expected high host
specificity (Marchante et al., 2011). The registry can be completed with a
photograph, which is not mandatory.

The protocol was launched in March 2020, anticipating the expected in-
crease in both the number of galls and sites with galls, rendering it impossible
to monitor by scientists alone (L�opez-N�u~nez et al., 2021). Even considering
the high specificity of the project, in the first two years, 54 users submitted
nearly 5000 records. In 2020, there were 1662 records by 26 users, and in
2021 these numbers almost doubled: more than 3000 new observations
were reported by 44 users, of which 27 did it for the first time. In addition
to the dedicated Epicollect5 project, citizen scientists also reported galls by
email (6), iNaturalist (14), and Facebook (1), although these alternative sour-
ces generally include less information. Citizen scientists that use the Epicol-
lect5 project tend to also record the absence of galls in A. longifolia and in

Figure 11.3 Workflow of the Trichilogaster acaciaelongifoliae monitoring project. This
project asks citizens to spot and register galls of the small Australian wasp
T. acaciaelongifoliae released as a biocontrol agent of the invasive Acacia longifolia.
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other plants. With almost 500,000 galls registered, the project is being suc-
cessful at monitoring both the presence (2557 records) and absence (2121) of
galls in A. longifolia, and their absence in native plants (561).

Participation in the project is variable according to users’ main interests
and occupations (Fig. 11.4), with most observations being reported by re-
searchers, ICNF collaborators, some teachers and their students (schools),
science communicators, and land managers. As the populations of
T. acaciaelongifoliae keep increasing and spreading, the participation of citizen
scientists is expected to continue to increase, allowing a more complete
follow-up of the establishment and effects of this biocontrol agent. This cit-
izen science project facilitates the monitoring across the entire country by
engaging local communities that know the field sites better and can reach
areas that would be very difficult to reach for land managers and scientists.

Final considerations

To conclude, citizen science has been used for monitoring biodiversity
for several centuries, but with new technologies and approaches to engage
citizens, the number and reach of initiatives and participants have increased
dramatically in the last few decades. This increase has also been observed in
the area of biological invasions with many projects focusing on IAS,
including insects and even insects that are used as biocontrol agents that
help to control IAP. One of the major advantages of citizen science is the

Figure 11.4 Number of observations recorded in Trichilogaster acaciaelongifoliaemoni-
toring project. Data from different users are represented from March 2020 to January
2022.
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ability to engage and change the mindset of people, increasing their bio-
literacy and awareness about the surrounding biodiversity and its threats.
This may transform citizens into active biodiversity conservation keepers,
connecting them again with nature and enhancing their quality of life.
Another important advantage is the huge amount of potential data
contributorsdcitizens are many and are everywhere. Although their partic-
ipation might add some obvious bias (e.g., more participation in urban than
in natural areas or in easily accessible locations), engaging the public in cit-
izen science projects increases substantially the capacity of reporting and
(early) detecting IAS.

The “Achilles heel” of citizen science projects lies in their reliance on the
identity and characteristics of the target organism. If it is a more charismatic
or potentially threatening species/group of species (e.g., ladybirds or Asian
hornets), it can be easier to attract citizen participation and get accurate re-
cords; it is not by chance that there are many projects focused on charismatic
species and less on others. If it is not a highly charismatic species (e.g., brown
marmorated stink bug), it may be more challenging to promote users’
engagement, and maintain and increase their active participation over
time, or it may be necessary to train users in recognition and detection of
the target species. These limitations are common to many citizen science
projects but are particularly aggravated in “inconspicuous” target species.

From an applied perspective, data on the distribution of invasive alien in-
sects, IAP, and even native insects collected by citizen scientists can be
particularly useful for land managers. Such data may be critical to intervene
strategically, timely, and more quickly in the right places where species are
detected, especially when considering IAS early detection. However, the use
of such data is still relatively limited in practice due to several reasons; for
example, land managers and other stakeholders are not always aware of
the existing citizen science data; sometimes they do not fully trust these
data, or data are not always easily accessible. But as time goes by and citizen
scienceeaccumulated data become part of more complete, long-term and
best-known well-managed databases, they will increasingly contribute to
assess species trends (including native insects) and to timely and trustworthy
survey invasive alien insects and plants. Although not the focus of this chap-
ter, it is worth noting that citizen science recording of insects, in general, can
contribute to monitoring insect decline, helping not only to better under-
stand this phenomenon but also to increase citizen awareness and involve-
ment in the conservation of insects. For that, it is essential that data are
open, follow FAIR principles and standards, and that data sharing and
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interoperability are promoted, to ensure easy and fast access; these features
are increasingly applied and valued, which will help to increase the use of
citizen science data.

Another limitation of citizen science projects is the lack of continuous
funding. Many projects are set up and (initially) supported by short-term
funding. But when this funding ends, the essential activities of participant
retention and curation of data, crucial in many projects, are compromised
and sometimes dictate the end of the project. This can eventually be over-
come through the promotion of better use and harmonization of projects
and technologies already publicly available and customizable, such as
iNaturalist or the EASIN app, with good collaborative networks and a
peer validation of data, rather than the multiplication of many local and
species-specific projects (although these also have advantages).

Although several challenges remain, the potential of citizen science for
monitoring IAS (including insects) is noticeable not only for science but
also for the management of these species, as illustrated by the few examples
explored above. Numerous projects focus on the acquisition of species dis-
tribution data, relying on technological advances for both precise geoloca-
tion and species identification. But many also gather biological and
ecological data, allowing considerable increases in knowledge and a better
understanding of the species targeted. Strategies have been diversifying,
and besides web and mobile maps, citizen science projects currently include
tools based on artificial intelligence (van Klink et al., 2022), WhatsApp, and
other social networks (Werenkraut et al., 2020).
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Introduction

Insects are ubiquitous in many terrestrial ecosystems and represent one
of the most diverse groups of species on Earth (Grimaldi & Engel, 2005;
Stork, 2018). They are fundamental to the proper functioning of ecosystems
as they fulfill essential functions within food webs, and are crucial in pro-
cesses such as pollination, pest control, or the decomposition of organic mat-
ter (Grimaldi & Engel, 2005; Samways et al., 2020). However, populations
of some insect species have been depleted due to a phenomenon known as
global insect decline (Cardoso et al., 2020; Potts et al., 2010; van der Sluijs,
2020; Wagner et al., 2021). More than 70 extinctions of insect species have
been documented in the last few centuries, although it is estimated that
rather thousands have occurred (Dunn, 2005). This decline has been attrib-
uted to various factors, including climate change, habitat degradation, the
massive use of agricultural pesticides, and biological invasions (Cardoso
et al., 2021; Tallamy et al., 2021; Wagner & Van Driesche, 2010).

Invasive species have become one of the main challenges that the present
and future generations will have to face to avoid species collapses and biodi-
versity crisis (Py�sek et al., 2020). Over the past two centuries, humans have
introduced thousands of species of plants, animals, and microorganisms to
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areas outside their natural biogeographic regions, some of which have
become invasive (Seebens et al., 2021). Invasive alien species can have devas-
tating consequences for native ecosystems, e.g., they can reduce ecosystem
services (Pejchar & Mooney, 2009), alter species interactions (Rodríguez
et al., 2019, 2021), or cause habitat degradation (Gozlan et al., 2010) and
biodiversity loss (Jaureguiberry et al., 2022).

Insects are particularly vulnerable to environmental disturbances,
including those caused by biological invasions (McCary et al., 2016;
Smith-Ramesh, 2017). The effects of invaders on native insects depend
on several factors, including the traits of the invasive and native species
and the characteristics of the invaded ecosystems (Catford et al., 2022).
For example, even though insect assemblages are generally negatively influ-
enced by invasive alien plants, not all insect groups are affected equally
(Rodríguez, Cordero-Rivera et al., 2020; Rodríguez, Novoa, et al.,
2020). In the last few decades, scientists first noted mysterious declines in
several insect species, such as wild bumblebees (Bombus spp.) in North
America (Colla & Packer, 2008), Bombus dahlbomii in South America
(Morales et al., 2013; Schmid-Hempel et al., 2014), wild bees and hoverflies
in the United Kingdom and the Netherlands (Potts et al., 2010), longicorn
beetles in Japan (Makihara et al., 2004), or the semiaquatic coleopteran
Carabus clatratus in Europe (Turin et al., 2003). Remarkably, all the above
examples have in common that the severe reduction of populations occurred
after introducing invasive species to those regions.

On a global scale, the impact of invasive alien species on native insect
populations is difficult to assess. As seen from the previous chapters, most
existing studies have focused on specific regions or species groups. As a
result, the impact exerted by invasive species on native insects may not
seem quantitatively relevant on a global scale. However, we now know
that invasive alien species may produce cascading effects that induce the
loss of environmental stability (Bucciarelli et al., 2019; Kehoe et al., 2021)
and lead to the decline or even extinction of insect species, especially on
islands (Clavero & García-Berthou, 2005; Dawson et al., 2017; Russell &
Kaiser-Bunbury, 2019).

In this final chapter, our goal is to emphasize the necessity of preventing
future invasions. We provide an overview of current taxonomic biases and
gaps in international policy regarding invasive species and propose to engage
citizens in the monitoring and management of invasive species and the con-
servation of native insects.
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Actions to prevent future invasions

As the trade and use of alien species by humans increase (Chapter 4),
governments and international organizations should establish environmental
regulations agreed upon between countries, including preventive measures
and protocols for early detection of potentially invasive species (Burgiel
et al., 2006; Robertson et al., 2020). For example, in the European Union,
a reduction in quarantine times and the weakening of customs controls at the
continental level may allow the spread of invasive alien insects, hence facil-
itate their spread between European countries once they are successfully
established in the region (Roques et al., 2010). Therefore, the proactive ca-
pabilities of border controls, quarantine laws, and early warning systems
need to be strengthened, especially in those continents or countries where
the regulations are lax (Early et al., 2016).

International regulations aiming to prevent the deliberate introduction
of alien species already exist, such as those established by the European
Union and the Convention on International Trade in Endangered Species
of wild fauna and flora (CITES). However, policies by different interna-
tional agencies sometimes clash directly with each other. For instance, the
World Trade Organization promotes an unrestricted movement of goods,
while the Convention on Biological Diversity and CITES promote the
regulation of these movements (Bang & Courchamp, 2021).

Moreover, most existing international policies and guiding principles
related to the movement of alien species among countries consider mainly
their potential economic impacts on managed ecosystems, such as agricul-
ture, livestock, and fisheries (Bang & Courchamp, 2021). Policies that
consider potential biodiversity losses, especially losses of insect diversity,
are scarce because they are difficult to quantify, especially in economic terms
(Diagne et al., 2021). For example, regulations on the use of alien insects
vary among countries, and precise standards on safety, marketing, and animal
welfare are largely lacking (L€ahteenm€aki-Uutela et al., 2017, 2021). Conse-
quently, countries establish their own criteria for introducing alien insects,
considering mainly the potential effect of their pathogens on humans or
domesticated animals but not on native insects (Bang & Courchamp, 2021).

Partially due to the rapid development of the Internet and the prolifer-
ation of virtual marketplaces, and the difficulties of implementing current
regulations, many regulated invasive species are still being introduced in
vast numbers through the wildlife trade (Chapter 4; Cardoso et al., 2021;
Hulme et al., 2018). Sales of alien wildlife through the Internet are of special
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concern (Kay & Hoyle, 2001; Lenda et al., 2014; Martin & Coetzee, 2011)
since most countries do not adequately equip or standardize control facilities
to monitor them (Burgiel et al., 2006). A potential solution is to train cus-
toms authorities and personnel through interagency programs to enhance
the detection of invasive species, primarily at entry points of people and
goods (Kaufman, 2021). Diagnostic protocols can be helpful tools to estab-
lish preventive guidelines for identifying and avoiding the entry of potential
invaders (e.g., invasive Cactaceae species; Novoa et al., 2016). Additionally,
appropriate trade regulations, certification programs, quarantine protocols,
and post entry monitoring could be implemented (Bang & Courchamp,
2021; Burgiel et al., 2006; Smith et al., 2009).

Overall, an integrated approach that increases public awareness and ed-
ucation and improves trade regulations and detection techniques can help
reduce the introduction of potentially invasive species (Sigouin et al.,
2017; Sung & Fong, 2018) and therefore protect native insect diversity
(Robertson et al., 2020).

Biases toward non-insect taxa

The currently described insect species far outnumber the known
vertebrate species. However, less than 1% of described insect species have
been assessed for conservation status as of 2010, compared to 44% of verte-
brate species (Bartel & Altizer, 2012). Moreover, within insects, there are
certain biases toward assessing larger and more attractive “charismatic” spe-
cies compared to other relatively small, endemic, or inconspicuous species
(Cardoso, 2012). Even among the general population, insects are generally
less popular and charismatic than other animals (Jari�c, Bellard, et al., 2020;
Jari�c et al., 2019). These biases translate into conservation actions. For
example, most animal conservation projects in Europe over the last three
decades have focused on vertebrate species, with six times higher invest-
ments than on invertebrates (V970 vs. V150 million) and birds and
mammals accounting for three-quarters of the total budget (Mammola
et al., 2020). Also, globally, protected areas have been mainly established
to conserve vertebrates and plants, and they have not been successful in pre-
venting insect loss (Chowdhury et al., 2023). Overall, it could be considered
that certain biases exist where conservation efforts focus primarily on species
popularity rather than extinction risk. Unsurprisingly, these biases are also
existent within the field of invasion science, in which the impacts of invasive
species on native insect populations are generally less studied than other
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impacts, and invasive insect species are generally less managed than other
invasive taxa. Additional efforts would be needed to bring scientific and so-
cial focus to less charismatic species that urgently need conservation atten-
tion (Jari�c et al., 2019), and future directions in conservation targets for
2030 and beyond should take new steps to avoid potential biases (Mammola
et al., 2020).

Actions to include citizens in invasive species
management and native insect conservation

The role of the public is crucial for insect conservation and invasive
species management. New technologies make it possible for citizens to
get involved in biodiversity monitoring (Howard et al., 2022), both in terms
of geolocating and early detection of invasive alien species and in conducting
biodiversity inventories of native insects that may be impacted by biological
invasions (see Chapter 11). The number of initiatives and participants in cit-
izen science projects has increased sharply in the last decade (Chandler et al.,
2017; Johnson et al., 2020; Pocock et al., 2017; Theobald et al., 2015), with
many projects focusing on invasive species, including insects (Chapter 11).
The contribution of citizens to the early detection, monitoring, and man-
agement of invasive species is an opportunity that can help not only scientists
but also managers and government agencies (Ricciardi et al., 2017). Indeed,
in those regions with more active scientists, interested naturalists, or even cit-
izen science projects, the rates of successful establishment of new invaders are
lower compared to regions that pay less attention to biological invasions
(Kraus, 2009).

Many species are generally unknown to most participants; for this reason,
projects should include plans to provide identification skills to the target
audience. To avoid possible biases in data collection, it is essential to teach
the public how to recognize and correctly name species, as this will increase
the accuracy of the data collected (Chapter 11). Therefore, citizen science
projects should include training workshops, species factsheets, outreach sem-
inars, or social media communication to increase identification skills and
engage participants. Particularly, social media can be an important technol-
ogy for transmitting information on global change challenges (e.g., invasive
species) and needs for insect conservation, being a “winewin” for humans
and nature (Bergman et al., 2022; Edwards et al., 2022; Sbragaglia et al.,
2022).
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Citizen science projects are fundamental not only for the data itself but
also to allow the general public to participate in research and/or conserva-
tion projects. This results in a greater connection between people and na-
ture, increasing knowledge and awareness of insect diversity and
conservation. Promoting citizen science and public awareness could also
improve people’s attitudes toward invasive species management (Jari�c,
Courchamp, et al., 2020; Kapitza et al., 2019; Novoa et al., 2017).

Concluding remarks and future directions

The intentional and unintentional introduction of invasive species has
been facilitated by globalization (Chapter 4) and policy gaps, resulting in the
emergence of many new invasive species worldwide that can have delete-
rious impacts on native insect populations (Chapters 5e9). At present, these
global shifts make it even more challenging to achieve a balance between
human activities and insect conservation. Policy differences between coun-
tries complicate international regulations and require more robust bio-
security measures to be implemented globally, especially in regions with
significant movement of people and goods (L€ahteenm€aki-Uutela et al.,
2018). To address this issue, more resources should be devoted to explore
new trade measures such as ban regulations, invasive species databases, trade
guidelines and action protocols, tariffs, or tradable risk permits (Westphal
et al., 2008). This could raise awareness among traders and the general public
of the costs of their actions and encourage them to take appropriate bio-
security measures (Perrings et al., 2005).

Another significant challenge is the ongoing influence of climate change
on the distribution of insect species that may result in changes in species’
niches (Bebber et al., 2013). Consequently, establishing continental-scale
monitoring programs is becoming increasingly necessary to record these po-
tential changes (Chapman et al., 2015). To mitigate invasive species threats
and reverse environmental degradation, future monitoring and management
programs should include aspects from citizen science to restoration ecology.
One way to incentivize invasive species management is to highlight poten-
tial intangible benefits such as reducing forestry and agricultural losses, safe-
guarding biodiversity, and improving ecosystem health (Hanley & Roberts,
2019).

Preventing the impacts of future invasions on native insect conservation
is crucial. The drastic decline in insect populations has caused alarm and
prompted many inquiries about the environmental causes of such decline
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(Chapter 3). If we do not act, the increasing rate of invasive introductions
may result in the decline of many more insect species in wild native popu-
lations (Newbold et al., 2015; Wagner, 2020). There is a pressing need to
understand the role of invasive species in the global insect decline, establish
standardized methods, and improve communication strategies. To fully un-
derstand this phenomenon, long-term monitoring data can provide valuable
insights into global research questions. Although this book compiles relevant
information about invasive alien species and their role in the decline of
native insect species, much remains to be explored in terms of demonstrating
invasive species’ direct and indirect impacts on large-scale insect populations.
This information is a first step and emphasizes the need to prevent the intro-
duction and spread of invasive species and to manage those already present to
minimize overall insect declines and promote insect conservation.
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