The first steps towards unifying concepts in invasion ecology were made one hundred years ago: revisiting the work of the Swiss botanist Albert Thellung

Ingo Kowarik1,* and Petr Pyšek2,3

1Department of Ecology, Technische Universität Berlin, Rothenburgstr. 12, D 12165, Berlin, Germany, 2Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43, Práhonice, Czech Republic, 3Department of Ecology, Charles University in Prague, Vinicná 7, CZ-128 44, Prague, Czech Republic

*Correspondence: Ingo Kowarik, Department of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin D 12165, Germany. E-mail: kowarik@tu-berlin.de

ABSTRACT

Aim Biological invasions are a major threat to biodiversity, and The ecology of invasions by animals and plants by Charles Elton (1958) is often recognized as the starting point for modern invasion research. Yet there were predecessors in invasion research whose contribution to the development of ideas and concepts in this field is often underestimated. To contribute to a balanced perception of pioneers in invasion research, we retrace the work of the Swiss botanist Albert Thellung (1881–1928) whose main work, La flore adventice de Montpellier, appeared 100 years ago, in 1912, and illustrate how his ideas contributed to the current state of the art in the fields of invasion science and biogeography.

Location None.

Methods We discuss conceptual approaches in the invasion-related work by Albert Thellung.

Results Thellung’s early work covered topics that are still central to widely used invasion frameworks. He promoted concepts to classify alien species (degree of naturalization, introduction pathways and time period of introduction) and adopted these systematically at a regional scale in his alien flora of Montpellier, comprising 800 non-native species. He introduced an exact population-based definition of naturalization, with links to environmental barriers, and elaborated the first assessment of pathway efficiency by relating introduction modes to naturalization. With conceptual papers and a first review of human-mediated plant introductions, Thellung stimulated further research on plant invasions as well as modern terminological frameworks for alien plants.

Main conclusions Albert Thellung was an outstanding member of the group of pre-Eltonian invasion scientists. He opened up focussed research in the field of alien plants in Europe, and his theoretical approaches were a powerful step towards unifying concepts in invasion ecology.

Keywords Biological invasions, conceptual frameworks, exotic floras, introduction pathways, invasion ecology, naturalization, wool aliens.

INTRODUCTION

The English ecologist Charles Elton was the first who clearly recognized the global dimension of impacts associated with the introduction and spread of alien organisms. His book The ecology of invasions by animals and plants (Elton, 1958) is generally renowned as the starting point for the focussed scientific attention on biological invasions (Richardson & Pyšek, 2007, 2008; Richardson, 2011). Today, biological invasions are broadly perceived as a major driver of change in biotic patterns and one of the most important causes of biodiversity loss world-wide (Millennium Ecosystem Assessment,
2005; Pyšek & Richardson, 2010). As Richardson & Pyšek (2007) state, Elton’s book has been, and still is, extensively used as a source of ideas and stimulus for fundamental concepts in invasion ecology. The authors thus conclude that Charles Elton ‘was a visionary scientist who fostered considerable cross-disciplinary synergy’, a view ‘shared by most prominent researchers in the field’ (Richardson & Pyšek, 2007, p. 163).

Given that Charles Elton is the father of modern invasion ecology, there were indeed several generations of grandfathers and great-grandfathers who paved the way to systematic research in invasion topics (see Trepl, 1990; Chew, 2011 for reviews). The phenomenon of introduced species has been addressed since the 16th and 17th centuries, and in the late 19th and early 20th centuries, it was mentioned in the writings of prominent scientists, including Charles Lyell (1767–1849), Alexander von Humboldt (1769–1859), Joakim Frederik Schouw (1789–1859), Alphonse de Candolle (1806–1893), Charles Darwin (1809–1882) and Joseph Hooker (1817–1911; see Trepl, 1990; Chew, 2011; Richardson & Pyšek, 2008). Moreover, in different European regions, several systematic studies emerged that led not only to a wealth of inventories of non-native species (e.g., Büttner, 1883; Lehmann, 1885; Probst, 1949), but also to the earliest concepts to classify them rigorously. Most prominent among the latter are Watson’s *Cybele Britannica* (Watson, 1847) and de Candolle’s *Géographie botanique raisonnée* (de Candolle, 1855 and, later, the floras by Thellung (1912) and Linkola (1916, 1921). Yet often written in other languages than English and not being included in the Web of Science, these works are not easily accessible to many invasions scientists today. This clearly brings about risks of underestimating the contribution of older authors to the evolution of ideas and concepts in invasion ecology. As early as in the 1950s, the Finnish botanist Jalas (1955) indirectly pointed to the richness of existing terminological and conceptual frameworks when he complained about a terminological confusion – similarly as Blackburn et al. (2011) did about 50 years later when considering the current conceptual diversity in plant and animal ecology or terrestrial and marine ecology, respectively.

Here, we retrace some lines in the scientific work of the Swiss botanist Albert Thellung whose contribution to invasion science appears to be strongly underestimated. Chew (2011), in his review of predecessors of modern invasion biology, shortly refers to Thellung, but mostly with a focus on terms and without reflecting conceptual ideas behind. Thellung is not totally forgotten though, as illustrated by 97 references to his main work, *La Flore adventice de Montpellier* (Thellung, 1912), in Google Scholar. Yet the number of 3930 references to Elton’s *The ecology of invasions by animals and plants* in the same database is higher by a factor of about 40 (access to Google Scholar on 24 July 2012). One-third of these citations have appeared since 2008, that is, the year in which the 50th anniversary of Elton’s work was commemorated in a special issue of *Diversity and Distributions* (Richardson & Pyšek, 2008). In contrast, only 12% of total references to Thellung’s *Flore adventice* are related to the same reference period. The Cited Reference Search tool in the Web of Science revealed 2616 references to Elton’s book, a number that is higher by a factor of about 85, compared to only 31 references to Thellung’s volume (as of 25 July 2012).

To contribute to a more balanced perception of important pioneers in invasion science, we take the 100th anniversary of the first publication of the *Flore adventice de Montpellier* in 1912 to highlight Albert Thellung’s status as an outstanding member of the group of pre-Eltonian invasion scientists and illustrate how his ideas contributed to the current state of the art in the fields of not only invasion science, but also conservation biogeography in general. This is because, as we show below, Thellung’s research on alien species had a strong biogeographical focus and his concepts and ideas are tractable in modern frameworks of biological invasions.

ALBERT THELLUNG: A PIONEER IN INVASION RESEARCH

Albert Thellung (Fig. 1) was born in Enge, Zürich on 12 May 1881, and passed away in the same city on 6 June 1928. Thellung started his studies of natural sciences at the Universität Zürich in 1900 and passed his final exam (with distinction) in 1904. Since October of the same year, Thellung worked, with some interruptions, as assistant lecturer (wissenschaftlicher Assistent) at the Botanical Museum of the Universität Zürich (today: Institute of Systematic Botany). He completed his doctoral thesis, a monograph on the genus

![Figure 1](image)
Thellung habilitated in 1909 and received the grade of a titular professor in 1921. Apart from a research stay of about 1 year in Montpellier, France, Thellung worked mainly in Zürich. Hans Schinz, who was the director of the Botanical Museum and in this position both a superior and friend of Thellung, published an obituary in the year of Thellung’s death (Schinz, 1928) with the previously cited details on Thellung’s academic career. Schinz also reported that Thellung had a weak constitution that forced him repeatedly to interrupt his work.

The scientific work of Albert Thellung includes about 240 publications, which appeared between 1902 and 1930 and which are listed in the obituary by Schinz (1928). Thellung’s main contribution to invasion science was certainly the promotion of conceptual approaches to classify introduced species (Thellung, 1905, 1912, 1918/19) and efforts to apply these concepts systematically to regional alien floras (Naegeli & Thellung, 1905; Thellung, 1912).

Moreover, Thellung participated in working on the flora of Switzerland (Schinz, 1914) and on Hegi’s famous Illustrierte Flora von Mitteleuropa (e.g., Thellung, 1913a) and published a wealth of taxonomic and floristic studies, including many papers on alien species (e.g., on the genera Aster and Helianthus; Thellung, 1913b) and contributions to the alien flora of Switzerland and other regions (e.g., Thellung, 1907). His last work on the origin of cultural species appeared 2 years after his death (Thellung & Braun-Blanquet, 1930). Although Thellung worked in Zürich and also spent some time in Montpellier, he was not associated with the Zürich-Montpellier-School as reported by Chew (2011) because this school is usually related to phytosociology, that is, the classification of plant communities, while Thellung’s scientific focus was on species.

One hundred years ago, in 1912, Thellung’s main work in the field of invasion science appeared, in French, comprising work that was accepted in 1909 as his habilitation thesis by the Universität Zürich: La flore adventice de Montpellier (Thellung, 1912; available online at http://archive.org/details/laforeadventice00thel). For this volume, Thellung compiled an account of the alien flora of Montpellier, a city in southern France with about 80,000 inhabitants in 1911, and its wider surroundings, the Hérault department (6101 km²). As this region had a very rich and long history of botanic records owing to the work of several well-known French botanists (e.g., Pyramide de Candolle, Cosson, Delile, Godron, Flahaut), Thellung was able to retrace the arrivals of some alien plant species since the 17th century, and in particular their entry associated with the wool processing activities at Port-Juvenal, a site near Montpellier, which had been connected with the Mediterranean sea by a canal to establish wool stores. As imported wool had been stored, washed and laid out for drying here, this site functioned for a long period (1750–1880) as the main gate of entry for hundreds of non-native species introduced with wool (‘wool aliens’) and emerging thereafter in the surroundings. These species formed the so-called Flora Juvenalis (Groves, 1991). Thanks to the excellence in plant recording and identification, to which Thellung himself contributed greatly, the long-term record of the Flora Juvenalis provides an outstanding example of the efficiency of a specific introduction pathway, and the role it can play in dramatically increasing and subsequently decreasing, once the wool production has been ceased, on the richness of a local alien flora (Groves, 1991). In 1950, only six species remained of about 500 wool adventives that had been recorded 200 years earlier (Rioux & Quezé, 1950).

What makes Thellung’s Flore adventice a milestone in invasion ecology is its combination of systematic, in-depth floristic research at a regional scale with conceptual approaches that capture the principles of invasion processes and associated drivers long before invasion ecology emerged as a distinctive field. The underlying theoretical concepts – in liaison with the main results from the Montpellier study – had also been published separately, with slight differences (Thellung, 1905, 1918/19), including an extensive review on human-mediated plant migration (Thellung, 1915). Hence, the following points refer to several of Thellung’s publications and illustrate important points which clearly stimulated the evolution of concepts in the field of invasion ecology.

Alien floras

In the second half of the 19th century, the influx of non-native plant species to Europe increased exponentially (Lambdon et al., 2008) and, as a response, many botanists reported on newly arrived species, an emerging research field (so called ‘adventive floristics’; Trepl, 1990). As cities function as important points of entry of non-native species, many reports on alien species had an urban context, but floristic inventories mostly focused on selected habitat types without covering the whole city area (Sukopp, 2002). Albert Thellung compiled two extensive alien floras that cover both large cities and their surroundings. The first inventory was compiled for the canton of Zürich, Switzerland, and was published as part of Die Flora des Kantons Zürich (Naegeli & Thellung, 1905). The second alien flora was Thellung’s major work, La flore adventice de Montpellier (Thellung, 1912).

Unlike other authors, Thellung did not only compile selected lists of interesting, frequent or naturalized species. Instead, his Flore adventice represents a complete regional inventory of 800 non-native plant species, based on extensive historical and contemporary records and including also a wealth of recent and extinct casual species that encompassed in total 87% of the flora. Moreover, Thellung (1912) adopted a comprehensive terminological framework to classify all non-native plant species in the Flore adventice.

Terminological framework

Thellung promoted very successfully a concept to classify non-native species according to three main criteria, which are still in the centre of invasion science (Blackburn et al.,
Invasion processes

Many approaches have been developed thus far to define invasion processes as a series of stages a species must pass through following its introduction to a new range (Williamson & Brown, 1986; Williamson & Fitter, 1996; Richardson et al., 2000; Inderjit et al., 2005; Blackburn et al., 2011). These approaches vary strongly in terminology and focus, with two main directions as depicted by Blackburn et al. (2011): concepts that define invasion processes as a sequence (i) of environmental barriers a species has to get over (e.g., Richardson et al., 2000) or (ii) of stages of population establishment a species may undergo in the new range (e.g., Williamson & Fitter, 1996). Blackburn et al. (2011) recently illustrated a way to combine both approaches into a unifying concept that can be broadly adopted across subdisciplines in invasion science.

Albert Thellung was, to our knowledge, the first who not only developed a comprehensive framework on invasion stages (Thellung, 1905, 1912, 1915, 1918), expanding on previous work (see Table 1), but also adopted this concept at a regional scale to complete floristic inventories (Naegeli & Thellung, 1905; Thellung, 1912). Interestingly, Thellung did not use the term ‘invasion’ although by then, this term had been already introduced by Goeeze (1882, pp. 106ff., ‘Pflanzennivasion’, ‘Invasion’) and Lehmann (1895). The work of at least the latter author was likely accessible to Thellung as he cited another of Lehmann’s papers (Thellung, 1912; p. 487). Instead of invasion stages, Thellung referred to different degrees of naturalization (see Table 1) and generally spoke of human-mediated plant migration (‘Pflanzenwanderungen unter dem Einfluss des Menschen’; Thellung, 1915). Concepts to differentiate invasion processes as a suite of naturalization stages indeed took root in the 19th century, as botanists such as Watson (1847) or de Candolle (1855) early on assigned introduced species to different naturalization stages. Thellung’s naturalization concept and related terms (Thellung, 1915, 1918/19) differ in one important point from those of earlier authors (Table 1): its general applicability to all alien species, independent of their mode of introduction or habitat types considered. Previous concepts were ambiguous because they excluded important groups of alien species or combined information on naturalization with other issues. De Candolle (1855), for example, did not consider the naturalization of weeds of fields and gardens, and Rikli (1903) applied his naturalization approach only to accidentally introduced species, hence excluding the important group of deliberate introductions; Watson (1847, 1870) merged naturalization stages with assessments of the certainty about the non-native status. De Candolle (1855) criticized the latter as lacking clear differentiation between alien and native species.

Thellung’s naturalization concept thus evolved on conceptually prepared grounds but yielded important progress in general applicability. Consequently, Scheuermann (1948) stated that — although scientists had addressed invasion topics for about 100 years — Thellung’s concept was very important as the first comprehensive and convincing approach to classify non-native plant species. In current approaches, the naturalization stage is still highlighted as a key phase in the invasion process (Richardson & Pyšek, 2012).

Definition of naturalization

Thellung (1915, p. 55, 1918/19, p. 41) provided the following definition of the naturalization of species that are established either in man-made or in natural habitats (translation by IK): ‘A plant species which had been introduced deliberately or accidentally by humans ... is naturalised when it is capable, with all characteristics of a native species, of [1] reproducing extensively without direct human interference by naturals means, i.e. by seeds, tubers, bulbs, sprouts ... depending on the species’ characteristics, [2] colonising more or less regularly adequate sites and [3] surviving also some unfavourable climatic periods.’

Thellung’s definition specifies a similar definition by de Candolle (1855, p. 608) and expands a related one by Watson (1870, p. 60). It combines two approaches that are also constitutive of the unifying concept of Blackburn et al. (2011): first, a population-orientated approach leading to a differentiation of established and casual species; second, an environment-related approach referring to barriers that may prevent species’ establishment, that is, the barriers of transport, survival, reproduction and environment (suitable habitats, climatic conditions) as defined by Blackburn et al. (2011).
<table>
<thead>
<tr>
<th>Current terms</th>
<th>Thellung (1905ff.)</th>
<th>Rikli (1903)</th>
<th>Watson (1847ff.)</th>
<th>de Candolle (1855)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alien, exotic, introduced, non-indigenous, non-native species; neobiota</td>
<td>Anthropochoren (Rikli, 1903; emend. Thellung, 1905; p. 232): umbrella term for accidentally or deliberately introduced non-native species</td>
<td>Anthropochoren (Rikli, 1903): combined group of non-natives and of those natives that colonize man-made habitats, that is, followers of man</td>
<td>Introduced species (Watson 1847, p. 65)</td>
<td>Combination of natives and non-natives in two groups: espèces cultivées (de Candolle, 1855, p. 642), including cultivated species (espèces cultivées volontairement) and agricultural weeds (espèces cultivées involontairement); espèces spontanées (de Candolle, 1855, p. 643): species occurring spontaneously outside of gardens and fields</td>
</tr>
<tr>
<td>Cultivated species</td>
<td>Ergasiophyten (Thellung, 1905; p. 233): non-native species that are cultivated and maintained at agricultural sites and in gardens; related terms are Ergasioliophyten (Thellung, 1905; p. 233): cultural relicts in the wild (formerly planted); Ergasiophygophyten (Rikli, 1903): escapees from cultivation</td>
<td>not established non-native species</td>
<td>casuals (Watson, 1870): not established non-native species</td>
<td>Adventives (de Candolle, 1855, p. 643): introduced, but poorly established outside of gardens and fields</td>
</tr>
<tr>
<td>Naturalization stages: Casuals</td>
<td>Ephemerophyten (Thellung, 1905; p. 234): non-native species without permanent populations</td>
<td>Ephemeren (Rikli, 1903): same as Thellung’s Ephemerophyten, but restricted to accidentally introduced species</td>
<td>Casuals (Watson, 1870): not established non-native species</td>
<td>Adventives (de Candolle, 1855, p. 643): introduced, but poorly established outside of gardens and fields</td>
</tr>
<tr>
<td>Established, naturalized species</td>
<td>Epökophyten (Thellung, 1905; emend. Thellung, 1918/19): non-native species, established on man-made sites, but depending on further human agency; a subgroup are Archaeophyten (Rikli, 1903; emend. Thellung, 1918/19) as established weeds of arable land and gardens, introduced in prehistoric times</td>
<td>Colonophyten (Rikli, 1903): same as Thellung’s Epökophyten, but restricted to accidentally introduced species</td>
<td>Colonist (Watson, 1847; p. 63): weeds of cultivated land or about houses, mostly at man-made sites; natives are not explicitly excluded from this group</td>
<td>Naturalisées (de Candolle, 1855, p. 643): established outside of gardens and fields, with two subgroups formed according to the certainty of having been introduced (probablement/ peut-être d’origine étrangère)</td>
</tr>
<tr>
<td>Neophyten (Rikli, 1903; emend. Thellung, 1915; p. 53): non-native species, established on natural sites among native vegetation, independently of further human agency</td>
<td>Neophyten (Rikli, 1903): same as Thellung’s Neophyten, but restricted to accidentally introduced species</td>
<td>Denizen (Watson, 1847, p. 63): established without the aid of man; likely having been introduced</td>
<td>Naturalized species (Watson 1859, p. 66f.): Species established among native vegetation without aid of man, including species from man-made sites</td>
<td></td>
</tr>
</tbody>
</table>
Naturalization stages

Thellung’s naturalization concept is basically population-oriented as it serves to ascribe non-native species to one of a sequence of naturalization stages that reflect the capacity of a species to propagate in the new range and, eventually, to establish self-replacing populations (Table 1). This concept of naturalization stages generally matches current approaches to discern invasion stages by differing between (i) introduced, but not propagating, species (ii), propagating, but not established, species and finally (iii) established species. Moreover and different from current concepts, Thellung discerned two categories of established species. These reflect the capacity of a species to establish self-replacing populations either due to further human interference or independently of the latter. This idea resulted in a differentiation of ‘Epökopfytten’ (epecoophytes) from ‘Neophyten’ (neophytes; Table 1), with the latter passing to the final stage in Thellung’s only implicit model of an invasion process: species able to establish permanent populations even under natural conditions without being further dependent of human activities.

This stage thus describes a new quality within the course of an invasion process and goes far beyond the question of ‘only’ establishing permanent populations under unspecified environmental conditions as other approaches do. In recent (European) invasion terminology, these species are called agriophytes (Kamyshov, 1959; Schroeder, 1969), while the term neophyte is now used to specify the introduction time, that is, to differentiate archaeophytes as older (pre-1492) from neophytes as younger (post-1492) introductions (Kreh, 1957; Schroeder, 1969). A modern analogy of Thellung’s approach is reflected in the scheme of Richardson et al. (2000) where two invasion stages are implicated, depending on whether the species overcome barriers imposed by vegetation in human-made or natural habitats.

By considering the dependence of naturalization on human interference, Thellung merged an approach of natural sciences, that is, assessing population establishment, with a cultural perspective, because he also considered the (eventually missing) functioning of human agency as a driver of population establishment when assigning species to naturalization stages. Thellung’s concept and his main idea of discerning aliens established under human-shaped or natural conditions have been rather influential in central Europe (e.g., Holub & Jirásek, 1967; Schroeder, 1969; Lohmeyer & Sukopp, 1992; see Trepl, 1990) but not beyond. The conceptual merging of biological and cultural perspectives has been criticized (Trepl, 1990). Yet one may also argue that it is exactly the interface between nature and culture that reflects a main paradigm of invasion science, because non-native species are defined as those expanding their natural range by human interference. There is some logic, although, in defining the last stage of an invasion process with reference to the emancipation from the functioning of just that force, the human agency that initially induced the invasion process—an idea that might be considered when further elaborating on unifying concepts in invasion science as proposed by Blackburn et al. (2011).

Introduction pathways and their efficiency

Identifying introduction pathways and assessing their efficiency is still a major challenge in invasion research (Carlton

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total species</td>
<td>800</td>
<td>693</td>
<td>107</td>
</tr>
<tr>
<td>Deliberate introductions</td>
<td>148</td>
<td>87</td>
<td>61</td>
</tr>
<tr>
<td>Accidental introductions with Wool</td>
<td>621</td>
<td>575</td>
<td>46</td>
</tr>
<tr>
<td>Seed and feed grains</td>
<td>526</td>
<td>507</td>
<td>19</td>
</tr>
<tr>
<td>Grain crops</td>
<td>40</td>
<td>31</td>
<td>9</td>
</tr>
<tr>
<td>Ballast materials</td>
<td>18</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Transportation vehicles</td>
<td>18</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Resulting from hybridisation</td>
<td>31</td>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>
Thellung’s focus was on the classification of alien plant species, taxonomically and with regard to introduction pathways and naturalization stages. He did not study impacts of introduced species but was clearly aware of their ecological relevance in relation to conservation issues. By incorporating this applied issue in his review on human-mediated plant migration (Thellung, 1915) and the later conceptual paper (Thellung, 1918/19), Thellung raised awareness of the negative impacts of plant invasions on resident vegetation. He reported, for example, that naturalized species, such as those of genera Solidago or Aster, can often significantly suppress or even replace native vegetation and become dominant at the landscape scale (Thellung, 1918/19; pp. 40f.) and referred to the dramatic effects of some European species in North America or Australia (‘dangerous and devastating weeds’). He also addressed implicitly the enemy release hypothesis by stating that the success of alien species may rely on their lacking competitors or enemies in the new range (Thellung, 1915, p. 62). He was also conscious of the fact that island floras are particularly threatened by introduced species.
CONCLUSIONS

Albert Thellung was an astute observer who was well aware of the dynamic nature of plant invasions and their consequence long before the principles of the field were put on firm ground in the 1950s. Already, his contemporaries highly appreciated his scientific work (Schinz, 1928) and so did many European scientists who worked in the field of biological invasions. Scheuermann (1948), for example, started a paper on classifying alien species with an enthusiastic appraisal of Thellung by stating that this scientist ‘opened up research in the field of alien plants’ and that his terminological framework was the first convincing approach in classifying alien plant species. Indeed, Thellung’s main approach to classifying non-native species according to their degree of naturalization, the main pathway of introduction and the time period of introduction, clearly expanded the work of previous authors and was trend-setting, at least in Europe, even though the followers later often used other terms than Thellung himself (Holub & Jirásek, 1967; Schroe- der, 1969; Trepl, 1990). It was thus the concept behind the terms and its application in classifying regional alien floras that stimulated many other scientists and directed further research in plant invasions. As a consequence, important parts of modern classification schemes about non-native species appear to have evolved, or to have been elaborated independently, on Thellungian grounds. He was also ahead of the times when assessing the efficiency of introduction vectors by relating them to species’ naturalization success. The Flore adventice de Montpellier, published 100 years ago, is thus a milestone in invasion research. Thellung’s concept to discern naturalization stages only implicitly referred to an invasion model. Yet this approach – population-based, with clear links to environmental barriers a species has to negotiate – can be seen as a first step to unifying concepts in invasion ecology. Albert Thellung is worthy to be rewarded as an important pioneer of modern invasion research.

ACKNOWLEDGMENTS

We thank Dave Richardson, Marcel Rejmánek and three anonymous reviewers for their comments, Rolf Rutishauser for providing Fig. 1 and Christina Alba for improving our English. IK was supported by institutional resources of Technische Universität Berlin, PP was supported by grant no. P504/11/1028 (Czech Science Foundation), long-term research development project no. RVO 67985939 (Academy of Sciences of the Czech Republic), institutional resources of Ministry of Education, Youth and Sports of the Czech Republic and acknowledges the support by Praemium Academiae award from the Academy of Sciences of the Czech Republic.

REFERENCES

I. Kowarik and P. Pyšek
Thellung, A. (1913b) Die in Mitteleuropa kultivierten und verwilderten Aster- und Helianthusarten nebst einem
Watson, H.C. (1870) A Compendium of the Cybele Britannica; or British Plants in their Geographical relations, Longmans, Green, Reader & Dyer, London.

BIOSKETCHES

Ingo Kowarik is professor of Ecosystem Science/Plant Ecology at Department of Ecology, Technische Universität Berlin. His research interests include understanding biological invasions, assessing related impacts as well as exploring biodiversity patterns in urban environments. He is co-founder and coordinator of the European Group on Biological Invasions NEOBIOTA since 1999.

Petr Pyšek is a researcher at the Institute of Botany, Academy of Sciences of the Czech Republic, Práhonice, and professor of ecology at Charles University Prague. He is interested in various aspects of biological invasions, especially the determinants of species invasiveness and community inviability.

Editor: Dr. Marcel Rejmánek